AD-A246 346

AD _____ORNL/TM-1175

OAK RIDGE NATIONAL LABORATORY

MARTIN MARIETTA

SPER 2 5 1992

Characterization of Rocket Propellant Combustion Products

Chemical Characterization and Computer Modeling of the Exhaust Products from Four Propellant Formulations

R. A. Jenkins

C. W. Nestor

C. Y. Ma

C. V. Thompson

B. A. Tomkins

T. M. Gayle

R. L. Moody

This document has been approved for public release and sale; its distribution is unlimited.

MANAGED BY 2 9 1 1 2.5

MARTIN MARIETTA ENERGY SYSTEMS, INC.

FOR THE UNITED STATES

DEPARTMENT OF ENERGY

92-04722

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

AD		
ORNL	TM-I	1759

CHARACTERIZATION OF ROCKET PROPELLANT COMBUSTION PRODUCTS

SUBTITLE:
CHEMICAL CHARACTERIZATION AND COMPUTER
MODELING OF THE EXHAUST PRODUCTS FROM
FOUR PROPELLANT FORMULATIONS

Final Report

DOE Interagency Agreement No. 1016-1844-A1 Project Order No. 87PP8774

December 9, 1991

Principal Investigator: R. A. Jenkins
Primary Contributors: C. W. Nestor, C. V. Thompson,
T. M. Gayle, C. Y. Ma, B. A. Tomkins, and R. L. Moody

Accesi	on For				
DTIC	ounced				
By Di_t ibutlon/					
Α	vailability 3	Codos			
Dist	berg laszA groseg3				
Del					

Analytical Chemistry Division
Oak Ridge National Laboratory
P. O. Box 2008
Oak Ridge, Tennessee 37831-6120
(615) 576-8594

Ms. Karen Fritz
Chief, Acquisition Management Liaison Office
U.S. Army Biomedical Research and Development
Laboratory, Fort Detrick,
Frederick Maryland 21701-5010

COR: Major John Young

REPORT DOCUMENTATION PAGE

inm i voproved I MB 1-io i ⊘104-011-8

BUSTION PRODUCTS Subtitle: Chemical Characterization and Computer Modeling of the Exhaust Products from Four Propellant Formulations 8. AUTHOR(S) 8. A. Jenkins, C. W. Nestor, C. V. Thompson, T. M. Gayle, C. Y.Ma, B. A. Tomkins, R. L. Moody 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Deparment of Energy Oak Ridge Operations Office P.O. Box 2001 Cak Ridge, Tennessee 37831-8622 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21702-5012 U.S. Army Biomedical Research and Development Laboratory Fort Detrick, Frederick, Maryland 21702-5012 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. ABSTRACT (Maximum 200 words) The objective of this work was the determination of the chemical composition fifting of scaled down rocket motors at the Army Signature Characterization Facility component levels predicted by a selected con and off-line sampling and analysis approaches were employed. Four types of pevaluated. CO levels ranged from 85 - 350 ppm, while particle concentrations	5. FUNDING APO 871 PE - 62 PR - 31 TA - 00 WUDA314 8. PERFORM REPORT ORNL, DOE :	E NUMBERS PP8774 2720A 1162720A835 0 1033 MING ORGANIZATION NUMBER /TM-11759
BUSTION PRODUCTS Subtitle: Chemical Characterization and Computer Modeling of the Exhaust Products from Four Propellant Formulations 6. AUTHOR(S) R. A. Jenkins, C. W. Nestor, C. V. Thompson, T. M. Gayle, C. Y.Ma, B. A. Tomkins, R. L. Mcody 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Deparment of Energy Oak Ridge Operations Office P.O. Box 2001 Oak Ridge, Tennessee 37831-8622 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21702-5012 U.S. Army Biomedical Research and Development Laboratory Fort Detrick, Frederick, Maryland 21702-5012 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. ABSTRACT (Maximum 200 words) The objective of this work was the determination of the chemical composition firing of scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down rocket motors at the Army Signature Characterization Facility of Scaled down	APO 871 PE - 62 PR - 31 TA - 00 WUDA314 8. PERFORT REPORT ORNL, DOE :	PP8774 2720A
U.S. Deparment of Energy Oak Ridge Operations Office P.O. Box 2001 Oak Ridge, Tennessee 37831-8622 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21702-5012 U.S. Army Biomedical Research and Development Laboratory Fort Detrick, Frederick, Maryland 21702-5012 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. ABSTRACT (Maximum 200 words) The objective of this work was the determination of the chemical composition firing of scaled down rocket motors at the Army Signature Characterization Facilithe comparison of those results with component levels predicted by a selected con and off-line sampling and analysis approaches were employed. Four types of pevaluated. CO levels ranged from 85 - 350 ppm, while particle concentrations	ORNL, DOE:	NUMBER /TM-11759 IA No. 1016-1844-A
Oak Ridge Operations Office P.O. Box 2001 Oak Ridge, Tennessee 37831-8622 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21702-5012 U.S. Army Biomedical Research and Development Laboratory Fort Detrick, Frederick, Maryland 21702-5012 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. ABSTRACT (Maximum 200 words) The objective of this work was the determination of the chemical composition firing of scaled down rocket motors at the Army Signature Characterization Facilithe comparison of those results with component levels predicted by a selected con and off-line sampling and analysis approaches were employed. Four types of pevaluated. CO levels ranged from 85 - 350 ppm, while particle concentrations	DOE :	IA NO. 1016-1844-A
U.S. Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21702-5012 U.S. Army Biomedical Research and Development Laboratory Fort Detrick, Frederick, Maryland 21702-5012 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. ABSTRACT (Maximum 200 words) The objective of this work was the determination of the chemical composition firing of scaled down rocket motors at the Army Signature Characterization Facithe comparison of those results with component levels predicted by a selected com and off-line sampling and analysis approaches were employed. Four types of pevaluated. CO levels ranged from 85 - 350 ppm, while particle concentrations	10. SPONSC	RING MONITORING
U.S. Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21702-5012 U.S. Army Biomedical Research and Development Laboratory Fort Detrick, Frederick, Maryland 21702-5012 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. ABSTRACT (Maximum 200 words) The objective of this work was the determination of the chemical composition firing of scaled down rocket motors at the Army Signature Characterization Facithe comparison of those results with component levels predicted by a selected con and off-line sampling and analysis approaches were employed. Four types of pevaluated. CO levels ranged from 85 - 350 ppm, while particle concentrations		
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. ABSTRACT (Maximum 200 words) The objective of this work was the determination of the chemical composition firing of scaled down rocket motors at the Army Signature Characterization Faci the comparison of those results with component levels predicted by a selected con and off-line sampling and analysis approaches were employed. Four types of pevaluated. CO levels ranged from 85 - 350 ppm, while particle concentrations		
Approved for public release; distribution unlimited 13. ABSTRACT (Maximum 200 words) The objective of this work was the determination of the chemical composition firing of scaled down rocket motors at the Army Signature Characterization Faci the comparison of those results with component levels predicted by a selected con and off-line sampling and analysis approaches were employed. Four types of pevaluated. CO levels ranged from 85 - 350 ppm, while particle concentrations		
The objective of this work was the determination of the chemical composition firing of scaled down rocket motors at the Army Signature Characterization Faci the comparison of those results with component levels predicted by a selected con and off-line sampling and analysis approaches were employed. Four types of pevaluated. CO levels ranged from 85 - 350 ppm, while particle concentrations	126. DISTRI	BUTION CODE
firing of scaled down rocket motors at the Army Signature Characterization Faci the comparison of those results with component levels predicted by a selected con and off-line sampling and analysis approaches were employed. Four types of pevaluated. CO levels ranged from 85 - 350 ppm, while particle concentrations		
All of the airborne particles were in the inhalable range. For two of the propella than 10 mg/m ³ . For the predominantly perchlorate formulation, hydrogen chlor than 100 ppm. Particulate PAH levels were about a factor of 10 lower than particulate matter. The computer model predicted mole fractions for CO were the predominantly inorganic formulation. The model correctly predicted only mit essentially no hydrogen cyanide. The accuracy of the predicted CO/CO ₂ ratios we formulations. A modification of the model accomplished by mathematically accour gases with ambient air brought the predicted CO/CO ₂ ratio into greater agreement experimentally.	ity at Reds puter mod ropellant c ranged from its, airborn de (HCl) I	tone Arsenal, and el. Both real time compositions were in 30 - 100 mg/m³. e lead was greater evels were greater stside ambient air - 35%, except for s of ammonia and ail but one of the king of hot exhaust
14. SUBJECT TERMS Propellants; Chemmical Characterization; Computer Modeling Combustion Products; RA III; FO	ypically 20 for amount as low for ting for mi	men was observed

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

17. SECURITY CLASSIFICATION OF REPORT

Unclassified

20. LIMITATION OF ABSTRACT

SECURITY CLASSIFICATION OF ABSTRACT

Unclassified

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.

State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. <u>Title and Subtitie</u>. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. <u>Funding Numbers</u>. To include contract and grant numbers; may include program element numbers(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No.

Block 6. <u>Author(s)</u>. Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. <u>Performing Organization Name(s) and</u> Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s) and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency Report Number. (If known)

Block 11. <u>Supplementary Notes</u>. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of ...; To be published in... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. <u>Distribution/Availability Statement.</u>
Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

Block 13. <u>Abstract.</u> Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms.</u> Keywords or phrases identifying major subjects in the report.

Block 15. <u>Number of Pages</u>. Enter the total number of pages.

Block 16. <u>Price Code</u>. Enter appropriate price code (NTIS only).

Blocks 17.-19. Security Classifications. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contins classified information, stamp classification and the top and bottom of the page.

Block 20. <u>Limitation of Abstract</u>. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

ARMY PROJECT ORDER NO: 87PP8774

DOE Interagency Agreement No. 1016-1844-A1

TITLE: CHARACTERIZATION OF ROCKET PROPELLANT COMBUSTION

PRODUCTS

SUBTITLE: CHEMICAL CHARACTERIZATION AND COMPUTER MODELING

OF THE EXHAUST PRODUCTS FROM FOUR PROPELLANT

FORMULATIONS

PRINCIPAL INVESTIGATOR: R. A. Jenkins

PRIMARY CONTRIBUTORS: C. W. Nestor, C. V. Thompson, T. M. Gayle

C. Y. Ma, B. A. Tomkins, R. L. Moody

CONTRACTING ORGANIZATION: U.S. Department of Energy

Oak Ridge Operations Office

P. O. Box 2001

Oak Ridge, Tennessee 37831-8622

REPORTED DATE: December 9, 1991

TYPE OF REPORT: Final Report

SUPPORTED BY: U.S.ARMY BIOMEDICAL RESEARCH AND DEVELOPMENT

COMMAND

Fort Detrick, Frederick, Maryland 21701-5010

PREPARED FOR: Contracting Officer's Representative

U.S. Army Biomedical Research and Development Laboratory

Fort Detrick, Frederick, Maryland 21702-5010

Major John Young, Contracting Officer's Representative

DISTRIBUTION STATEMENT: Approved for public release: distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized document.

Page intentionally left blank.

FORWARD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

- Where copyrighted material is quoted, permission has been obtained to use such material.
- Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.
- Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.
- N/A In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).
- N/A For the protection of human subjects, the investigator(s) have adhered to policies of applicable Federal Law 45CFR46.

Pl Signature

Date

Page intentionally left blank.

EXECUTIVE SUMMARY

The overall objective of the work described in this report is four-fold: to a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army's Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; b) determine the composition of the exhaust products; c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; d) recommend alterations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction.

Analytical validation studies were conducted in small chambers at the Oak Ridge National Laboratory (ORNL), while the actual firings were conducted at Redstone Arsenal. Real time determination of selected species was performed by a variety of techniques, including non-dispersive infrared spectrometry, chemiluminescence, electrochemical monitoring, and Samples for analyses of trace constituents were collected from optical scattering. individual firings in the ASCF, and returned to ORNL for analysis, usually by gas chromatography/mass spectrometry. Four types of propellants were examined: a double base, a double base with 8% potassium perchlorate, one propellant which was predominantly ammonium perchlorate, and a minimum signature reduced smoke propellant, which was about two-thirds octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Small, 2x2 motors, containing 25 - 75 g of propellant, produced significant quantities of carbon monoxide (CO) and particles when fired into the 20 m³ chamber. CO levels ranged from 85 - 350 ppm. This is equivalent to reaching 2500 - 7500 ppm if a full scale motor was fired in a similarly sized enclosed environment. Particle concentrations ranged from 30 - 100 mg/m³. All of the airborne particles were in the inhalable range. For two of the propellants (the double base and the minimum signature), airborne lead was greater than 10 mg/m³. No ammonia or hydrogen cyanide was detected above 1 ppm. For the predominantly perchlorate formulation, hydrogen chloride (HCl) levels were greater than 100 ppm in the ASCF chamber. Because of the relatively high background levels observed, trace organic vapor phase constituents were difficult to accurately quantify. While a wide variety of trace constituents were observed, only a few were present at levels greater than a few ppbv. Compounds present at levels greater than 10 $\mu g/m^3$ included benzene, methyl crotonate, toluene, and cyanobenzene. A number of PAHs and nitrofluorene were observed in the airborne particulate matter. However, the levels were about a factor of 10 lower than that in outside ambient air particulate matter at a military installation.

Computer modeling was performed with the NASA-Lewis CET-86 version. This approach obtains estimates of equilibrium concentrations by minimizing free energy. Mole fractions of major and minor species were estimated for a range of exit/throat area ratios. The predicted mole fractions for CO were typically 20 - 35%, except for the predominantly inorganic formulation. The model correctly predicted only minor amounts of arnmonia

and essentially no hydrogen cyanide. Predicted mole fractions did not vary a great deal with such input parameters as exit/throat area ratios or small changes in the heats of formation of the various compositions. The accuracy of the predicted CO/CO₂ ratios was low for all but one of the formulations. In general, if the model were to be used in its present state for health risk assessments, it would be likely to over-estimate exposure to CO.

Probably the greatest limitation of the model is its inability to account for reactions after hot exhaust gases leave the rocket motor nozzle. For example, the model predicted no significant quantities of NO would be produced, yet such was measured at ppm levels on every burn. A modification of the model accomplished by mathematically accounting for mixing of hot exhaust gases with ambient air brought the predicted CO/CO₂ ratio into greater agreement with that which was observed experimentally. It seems likely that with the appropriate modifications to account for the roles of kinetically governed processes and the afterburning of exhaust gases, the model could make a more accurate prediction of the amounts of the major products. However, it seems unlikely for the system to be modifiable to the extent to which accurate predictions of toxic or carcinogenic species present at the ppby level could be made.

TABLE OF CONTENTS

Forward
Executive Summary
Table of Contents
List of Tables
List of Figures
Acknowledgement
I. Objectives
II. Background
Part 1: Chemical Characterization Studies
Experimental
Results and Discussion
Summary and Recommendations - Part 1
Part 2: Modeling for Health Hazard Prediction
Introduction 3
Results and Discussion
Limitations and Modifications
Recommendations for Futher Work 5
References 5
Appendix A
Seleted Rocket Propellant Formulations
Appendix B 6
Trace Organic Vapor Phase Constituents Observed In Selected Rocket Exhaust Atmospheres

TABLE OF CONTENTS (Cont'd)

Appendix C	. 69
Output from Selected Runs of Computer Model NASA-Lewis CET-86	
Distribution List	121

<u>Table</u>	<u>LIST OF TABLES</u>	Page
1	Summary of Sampling and Analysis Strategy for Rocket Exhaust Constituents at ASCF	17
2	Summary of Characterization Data Composition D Major Constituents	20
3	Summary of Characterization Data Composition H Major Constituents	21
4	Summary of Characterization Data Composition L Major Constituents	22
5	Summary of Characterization Data Composition Q Major Constituents	23
6	Mean Concentrations Achieved in ASCF Chamber	24
7	Particle Size Distribution Rocket Exhaust Particulate Matter Mean Values	26
8	Concentration of Selected Constituents in Chamber Blanks	27
9	Estimated Concentration of Trace Vapor Phase Constituents Composition D	29
10	Estimated Concentration of Trace Vapor Phase Constituents Composition H	30
11	Estimated Concentration of Trace Vapor Phase Constituents Composition L	31
12	Estimated Concentration of Trace Vapor Phase Constituents Composition Q	31
13	Non-Siloxane Vapor Phase Compounds Present in Motor Exhausts at Concentrations Greater Than 10 µg/m³ in ASCF Chamber	32
14	Concentrations (µg/g) of Nitro-PAH and PAH in Particulate Matter Collected on Course Filters at ASCF Compared with Outdoor Air Particulate at US Army Installation	34
15	Exit/Throat Area Ratio Ranges Test Motor Configurations	38
16	Predicted Mole Fractions as a Function of Exit/Throat Area Ratios Composition D	40

LIST OF TABLES (Cont'd)

Table 17	Predicted Mole Fractions as a Function of Exit/Throat Area Ratios Composition H
18	Predicted Mole Fractions as a Function of Exit/Throat Area Ratios Composition L
19	Predicted Mole Fractions as a Function of Exit/Throat Area Ratios Composition Q
20	Effect of ± 5% Shift in Heat of Formation of Ammonium Perchlorate Composition L - Predicted Mole Fractions
21	Comparison of Observed and Predicted Carbon Monoxide: Carbon Dioxide Ratios
22	Comparison of Observed and Predicted Concentrations of Exhaust Constituents in ASCF Chamber
23	Effect of Choice Gaseous Equation of State on Computed Mole Fractions for Composition H
24	Influence of Exhaust Gas Mixing with Air on Carbon Monoxide/Carbon Dioxide Ratios. Composition D
A-1	Composition "D" Formulation
A-2	Composition "H" Formulation
A-3	Composition "L" Formulation
A-4	Propellant "Q" Formulation
B-1	Compositions "D and H" Concentrations
B-2	Composition "L" Concentrations
B-3	Composition "Q" Concentrations
C-1	Composition "D" Output
C-2	Composition "H" Output

LIST OF TABLES (Cont'd)

Table		Page
C-3	Composition "L" Output	. 100
C-4	Composition "Q" Output	. 112

Page intentionally left blank.

LIST OF FIGURES

<u>Figure</u>			Page
1	Time Course of Exhaust Products Post Firing.	Composition D	18
2	Time Course of Exhaust Products Post Firing.	Composition H	19

ACKNOWLEDGEMENT

We wish to thank the following individuals for their assistance with this project:

Ms. B. J. McBride, of the NASA-Lewis Research Center, for provision of the computer model used in the project; Dr. Eli Freedman, for assistance with interpretation of the results of the computer modeling; Mr. L. B. Thorne and his staff, of the U.S. Army Redstone Arsenal, for the construction and firing of the 2x2 rocket motors, the provision of samples of the various propellants, and the use of the Signature Characterization Facility and chamber; Dr. Steve Hoke, of the U.S. Army Biomedical Research and Development Laboratory, for the use of the on-line hydrogen chloride measurement system, and Major John Young, of the U.S. Army Biomedical Research and Development Laboratory, for his patience, support, and technical assistance in a number of the aspects of this project.

I. OBJECTIVES

The overall objective of the work described in this report is four-fold: to a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army's Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; b) determine the composition of the exhaust products; c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; d) recommend alterations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction.

II. BACKGROUND

Upon initiation of the Army's Health Hazard Assessment Program in 1983, the lack of information on the potential health hazards from weapons combustion products, to include rockets and missiles, became evident. Research to elucidate significant health effects of rocket and missile combustion products has been limited. Experiences with weapons systems such as ROLAND, VIPER, HELLFIRE, STINGER, and MLRS have resulted in the development of specific medical issues by the U.S. Army. Presumably, these issues will be addressed, in order to enhance the effectiveness of soldiers using such weapons. Requisite to addressing these issues is defining the chemical and physical nature of the combustion products.

Evaluation of rocket exhaust toxicity from Army missile and rocket systems has been directed towards a limited number of combustion products. Chemical species such as carbon monoxide, carbon dioxide, nitrogen, oxides of nitrogen, hydrogen chloride, sulfur dioxide, ammonia, lead, and copper are among those frequently evaluated. A USAMRDC study has demonstrated more than one hundred chemical species in the combustion products of selected propellants. Many of the species represent potential health hazards even though the majority of those identified were at low levels. During the study, data were obtained for the Multiple Launch Rocket System's (MLRS) propellant by computer prediction and laboratory analyses. The combustion product was generated by burning the propellant in a small test motor. When the exhaust plume was vented into a chamber with an inert atmosphere, good quantitative data was obtained for twelve chemical species, and was in excellent agreement with theoretically computed values. In excess of fifty trace gas species also were qualitatively identified.

Various investigators have examined propellant and related combustion products generated in a variety of ways to include directly from a weapon or other equipment system¹⁻⁵, burning in a calorimeter or bomb⁶⁻⁹, personal and general area sampling in indoor firing ranges^{10,11}, and detonation or combustion in chambers or microcombustors^{2,14-17}. The methods of sampling and characterization also have been varied. Sampling has been done under atmospheric^{1,2,4,5,12,16}, and less than atmospheric^{1-3,8,9,13-15} conditions which provide a basis for comparing the relation between variables, such as, pressure and available

oxygen, on the composition of the combustion product. Sampling methods have been either direct and continuous, e.g., the method used by Goshgarian^{13,14} where the exhaust products of solid propellants were introduced directly into a mass spectrometer for analysis immediately following combustion, or by collection in a container or on a medium for subsequent analysis. The latter has involved cryogenic trapping, evacuated glass or stainless steel cylinders, and sorbent cartridges, filters, and condensation trains. Analytical methods to detect organics, gases, metals, and particulates have included gas chromatography (GC), gas chromatography-mass spectroscopy (GC-MS), titration, optical and infrared spectroscopy, scanning electron microscopy (SEM), x-ray emission and diffraction, and particle size analysis. Because of limitations with each sampling and analytical technique, several techniques must be employed simultaneously to optimize qualitative and quantitative characterization.

Computer models have been used to predict propellant ballistic properties to include the identity of the major chemical species contained in the combustion products 1,3,5,17-19. When compared with laboratory derived empirical data, the models tend better to predict the major species than the minor ones both qualitatively and quantitatively 1,5,19. The models predict the chemical species that occur at the nozzle of the rocket as the exhaust exits; however, afterburning changes the chemical content of the combustion product. Afterburning and incomplete combustion effects are not predicted by the models.

The approach taken in this study was to carefully validate real time analytical methods in chamber studies at Oak Ridge National Laboratory (ORNL) for as many of the major constituents as practical. The instrumentation for real time monitoring would then be transported to the ASCF for the firing of the scaled-down test motors. Vapor and particle phase samples for determination of trace organics and metal species would be returned for analysis. The Army Signature Characterization Facility (ASCF) has been used to determine the concentrations of major toxic species in propellant exhaust, e.g., carbon monoxide, carbon dioxide, hydrogen chloride, lead, aluminum oxide, and other nuisance particles²⁰. The facility is a 19.6 m³ walk-in, climatic chamber with temperature limits of 40° to 140°F and humidity control in the range of 20 to 100% relative humidity (RH). Typical operating parameters are 70°F and 60% RH. Designed as a smoke measurement facility, the ASCF has been adapted for the measurement of rocket motor signature and exhaust constituents. The facility serves as a large gas cell in which the exhausts of standard 2 x 2 motors can be measured by infrared spectroscopy (Fourier Transform Infrared Spectroscopy, FTIS). Ports in the ASCF allow sampling and measurement by other methods, e.g., air sampling pumps and direct reading instruments.

The results of the characterization studies were then to be compared with values predicted using the most recent version of a computer model developed by the Lewis Research Center of the National Aeronautics and Space Administration (NASA-Lewis). The model was then to be refined to the extent of available resources, in order to improve the predictive capability of the system.

Results of these studies are described in two parts. In Part 1, results of the chemical and physical characterization studies are described and discussed. In Part 2, results of the

computer modeling work are described. Comparisons with characterization data are performed, and recommendations for model improvement are made.

PART 1: CHEMICAL CHARACTERIZATIONSTUDIES

EXPERIMENTAL

The sampling and analysis methods used in this study have been described in detail in a previous report²¹, and are summarized in Table 1. An assortment of real-time analytical instrumentation was employed. However, resources were not available for the use of online mass spectrometric measurement, as such would have required periodic transport to the ASCF. Essentially, the approach taken was to first validate candidate analytical methods in small chambers (0.4 and 1.4 m³) at ORNL. Analytical measurements using real time instrumentation were made of target species in the presence of well defined quantities of other species. The extent to which these materials altered the response to the target species was noted, and corrections made when appropriate. For species which could not be determined in real time (usually trace organic vapor phase and particle phase species), samples would be taken at the actual burns to be conducted at the ASCF, and returned to ORNL for detailed chemical analysis. Following method validation for the propellant composition of interest, the sampling and analysis instrumentation was transported to the ASCF at Redstone Arsenal, and deployed for monitoring and sampling. Typically, between 2 and 3 firings of a test motor could be conducted during each 8-hour shift. Burns of the various propellant formulations took place between August, 1987 and December, 1989.

RESULTS AND DISCUSSION

The compositions of the various propellant formulations tested in this project are listed in Appendix A. Briefly, Composition D was a double-base propellant, comprised of approximately 50% nitrocellulose and about 40% nitroglycerine. Composition H was also a double base system, with approximately 8% by weight of potassium perchlorate added. Composition L was a formulation comprised of nearly 75% ammonium perchlorate, with the remainder being polyvinylchloride plastic and di (2-ethylhexyl) adipate. Composition Q was a minimum signature propellant, comprised of 66% HMX, and about 11% each of nitroglycerine and butane triol trinitrate. (A fifth motor, referred to as Composition X was fired only one time, and no modeling studies were applied to it.) (Note that the linkage between the propellant and the weapon systems for which they may be used is considered CLASSIFIED information. Those having need of this information should contact the COR listed on the title page of this document.) All of the propellants contained small amounts of metals. The motor size tested varied between ca. 24 - 75 g. This compares to a typical launch motor weight on an anti-tank weapon system of ca. 560 g.

Sampling of the exhausts was not without its difficulties. For example, for the first run of Composition D, the high volume particulate collector was placed inside the ASCF

chamber. However, the shock wave from the firing was sufficient to blow the filter media out of the holder. Thus, for subsequent runs, the sampler was placed outside the chamber and

TABLE 1 Summary of Sampling and Analysis Strategy for Rocket Exhaust Constituents at ASCF

Component

Sampling and Analysis Method

Carbon Monoxide
Carbon Dioxide
Oxides of Nitrogen
Hydrogen Cyanide
Ammonia
Hydrogen Chloride
Total Suspended Particulate Matter
photometer

Real Time, non-dispersive infrared analyzer Real time, non-dispersive infrared analyzer Real time, chemiluminescence analyzer Real time, electrochemical analyzer Real time, electrochemical analyzer Real time, ion selective electrode Real Time: forward scattering infrared

Off line: two-stage high volume filter, gravimetric analysis

Metals

Low volume collection on membrane filter, followed by inductively coupled plasma or atomic absorption analysis.

Particle Size Distribution Cascade impaction, optical comparison of stages

Trace Vapor Phase Organics

Collection on multi-sorbent traps, followed by thermal desorption gas chromatography/mass spectrometric analysis.

Trace Particle Phase Organics

Collection on two-stage, high volume filter, analysis by high performance liquid chromatography and/or gas chromatography/mass spectrometry.

connected to it with the flexible plastic pipe. Also, on a latter run with "D," the force of the shock wave buckled the main chamber access door on the ASCF. For the final firing of "D," the nozzle was changed to force the propellant to burn over a longer period of time. This resulted in a considerable alteration in the exhaust composition (see Table 2).

Major Constituents

The observed exhaust major constituent concentrations in the ASCF are reported in Tables 2 - 5, along with various physical characteristics of the motors. The data is summarized in Table 6.

It is important to note that for those constituents determined in real time (ie, the gases), the concentrations listed represent peak concentrations. For gases, maxima were typically achieved within 30 seconds of the firing of the rocket motors. Presumably, maxima were achieved as the chamber contents were mixed by the fan mounted inside the chamber. Such was not always the case for the particulate phase species. For example, in Figures 1 and 2 are compared the time courses for some of the major exhaust products for firings of Composition D and H motors, from about 30 seconds following the firing onward. For Composition D, immediately after following the achievement of maximum concentrations, the constituent levels slowly decreased. While the same happened for Composition H vapor phase species, the particles were very slow to reach a maximum. Although particle

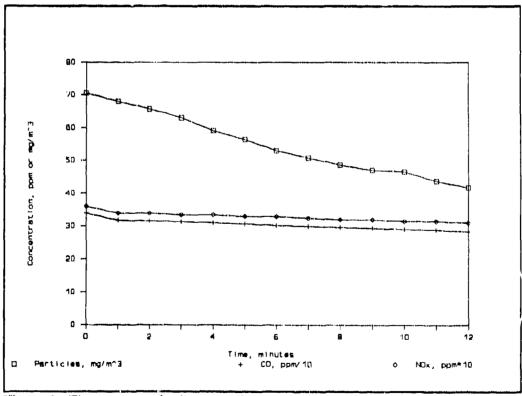


Figure 1. Time course of exhaust products post firing. Composition D.

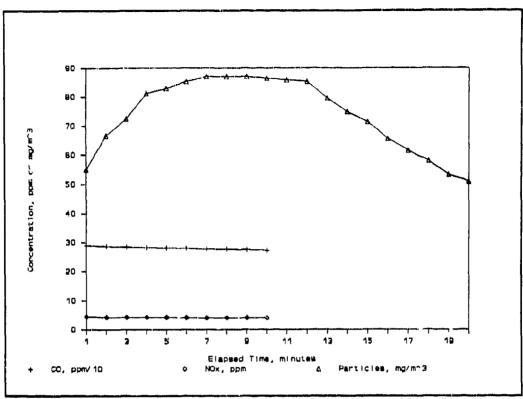


Figure 2. Time course of exhaust products post firing. Composition H.

size differences between the two products were minimal (see below), it was speculated that the action of the fans could have stirred up larger agglomerates which settled immediately after firing, which eventually broke up to form smaller primary particles. Concentration reductions seemed most likely due to leaking of the chamber contents through door seals, bulkheads, etc. Particle concentrations decreased somewhat more rapidly than those of vapor phase constituents, probably due to settling.

No attempt was made to determine the concentrations of methane, hydrogen gas, or water vapor. For the former two species, quantitative measurements would be very difficult without the use of an on-line mass spectrometer, and such was not available for this work. Water vapor is one of the major components of the motor exhaust. The mole fraction predicted by the NASA-Lewis computer program typically is in the range of 20% (see below). However, the difficulty of making accurate determinations of water vapor concentration in a large chamber is considerable. For example, the maximum amount of hydrogen in any of the formulations listed in Tables A-1 - A-4 is sufficient to produce only 15 g of H₂O in the 20 m³ ASCF chamber. This is comparable to increasing the concentration by at most 0.75 g/m³, to a concentration of ca. 11 g/m³ at 60% relative humidity at 21° C. The addition of this amount of water vapor would increase the RH by 4%, as long as no change in the temperature occurred. Given that such small changes would be difficult to measure accurately, and that water vapor representations.

TABLE 2

SUMMARY OF CHARACTERIZATION DATA COMPOSITION D MAJOR CONSTITUENTS

RUN NUMBER	1	2	3	4	5	6 ^d
DATE	8-25-87	8-25-67	8-26-87	8-26-87	6-23-88	6-23-88
QUANTITY OF PROPELLANT, g	75	71	75	75	67	NR
EXIT DIAMETER, Inches *	1.0	1.0	1.0	1.0	1.0	1.0
THROAT DIAMETER, Inches	0.55	0.707	0.50	0.50	0.50	NR
ASCF CHAMBER TEMPERATURE, *F	71	78	71	71	68	71
ASCF RELATIVE HUMIDITY, %	76	60	60	60	69	87
INTERNAL PRESSURE OF MOTOR, pola	2200	2500	3000	2600	2500	2500
CARBON MONOXIDE ^b , ppm	292	367	340	325	282	139
CARBON DIOXIDE ^{b,c} , ppm	2200	2500	3000	2500	1245	1505
NITRIC OXIDE ^b , ppm	4.2	3.0	3.6	3.5	2.2	43.0
NITROGEN DIOXIDE ^b , ppm	ND	ND	ND	ND	ND	ND
HYDROGEN CYANIDE ^b , ppm	ND	ND	ND	ND	ND	ND
AMMONIA, ppm	ND	0.2	ND	ND	ND	ND
TOTAL SUSPENDED PARTICULATE MATTER, mg/m ³	71	63	71	70	67	NR
LEAD mg/m ³	18	35	73	40	36.9	41.8
COPPER mg/m ³	2.0	3.8	91	4,4	4.0	4.8
ALUMINUM (as AL ₂ O ₃) mg/m ³	ND	ND	ND	ND	ND	ND
CHROMIUM mg/m ³	ND	ND	ND	ND	ND	ND
ZIRCONIUM OXIDE mg/m ²	ND	ND	ND	ND	ND	ND

Nominal exit diameter was 1.0 inches. However, this was an estimate only. Actual diameters could have varied between 0.75 and 1.25 Inches.

b Maximum observed concentrations.

[©] Determined in Runs 1-4 using Dreager Tubes, Runs 5 and 6 using NDIR analyzer,

d Special nozzle used which increased burn time. See text. Data may not be representative.

NR: Not Recorded

ND: Not Detected

TABLE 3 SUMMARY OF CHARACTERIZATION DATA COMPOSITION H MAJOR CONSTITUENTS

RUN NUMBER	1	5	3	4
DATE	6-22-88	6-22-88	6-22-88	6-23-88
QUANTITY OF PROPELLANT, g	25	25	24	24
EXIT DIAMETER, inches 4	1	1	1	1
THROAT DIAMETER, Inches	0.261	0.261	0.261	0.261
ASCF CHAMBER TEMPERATURE, *F	70	70	70	72
ASCF RELATIVE HUMIDITY, %	NR	68	57	63
INTERNAL PRESSURE OF MOTOR, pala	5000	5000	5000	5000
CARBON MONOXIDE ^b , ppm	290	C	300	298
CARRON DIOXIDE ^b , ppm	250	c	270	290
NITRIC OXIDE ^b , ppm	4.5	С	1.7	5.0
NITHOGEN DIOXIDE ^b , ppm	ND	C	CN	ND
HYDROGEN CYANIDE ^b , ppin	ND	0	ND	ND
HYDROGEN CHLORIDE, ppm	<1		<1	1
AMMONIA ^b , ppm	ND	0	סא	ND
TOTAL SUSPENDED PARTICULATE MATTER, mg/m ³	87	o	73	176
LEAD mg/m ³	0.771	c	0.618	0.486
COPPER mg/m ³	0.726	c	0.897	0.508
ALUMINUM (as AL ₂ O ₃) mg/m ³	ND	Ç	ND	ND
CHROMIUM mg/m ³	ND	¢	ND	ND
ZIRCONIUM OXIDE mg/m3	ND	0	ND	ND
MOLYBDENUM, mg/m ³	1.41	C	0.309	0.088
MAGNESIUM, mg/m ³	0.261	¢	0.224	0.250
TIN, mg/m ³	0.348	o	0.397	0.177

Nominal exit diameter was 1.0 inches. However, this was an estimate only. Actual diameters could have varied between 0.75 and 1.25 inches.

Maximum observed concentrations.

Sample Acquisition failure. Not Recorded

NR: ND: Not Detected

Table 4

SUMMARY OF CHARACTERIZATION DATA
COMPOSITION L

COMPOSITION L MAJOR CONSTITUENTS

RUN NUMBER	1	2	3	4
Date	1-18-89	1-18-89	1-19-89	1-19-89
Quantity of Propellant, g	24	24	24	24
Exit Diameter, inches a	1,0	1.0	1.0	1.0
Throat Diameter, Inches	0.28	0.28	0.28	0.28
ASCF Chamber Temperature, *F	69	70	71	70
ASCF Relative Humidity, %	NR	68	49	48
Internal Pressure of Motor, pela	2500	2500	2500	2500
Carbon Monoxide ^b , ppm	298	337	371	371
Carbon Dioxide ^b , ppm	164	137	164	150
Nitrio Oxide ^b , ppm	1.5	0.5	0.5	0,5
Nitrogen Dioxide ^b , ppm	ND	ND	ND	ND
Hydrogen Cyanide ^b , ppm	ND	ND	ND	ND
Ammonia ^b , ppm	ND	ND	ND	טא
Hydrogen Chloride, ppm	112	112	108	122
Total Suspended Particulate Matter, mg/m ³	50	33	38	51
Lead mg/m ³	2.73	2.71	1.52	1.50
Copper mg/m ³	5.74	4.43	3.98	3.80
Aluminum (as Al ₂ O ₃) mg/m ³	4.33	3.62	3.35	3,14
Chromium mg/m ³	0.64	0.52	0.52	0.46
Zirconium Oxide mg/m³	ND	ND	ND	ND
Cadmium, mg/m ³	0.15	0.13	0.12	0.11

Nominal exit diameter was 1.0 inches. However, this was an estimate only. Actual diameters could have varied between 0.75 and 1.25 inches.

b Maximum observed concentrations.

NR: Not Recorded ND: Not Detected

Table 5
SUMMARY OF CHARACTERIZATION DATA
COMPOSITION Q
MAJOR CONSTITUENTS

RUN NUMBER	1	2	3
Date	12-1-89	12-5-89	12-5-89
Quantity of Propellant, g	65	64	60
Exit Diameter, inches a	1,125	1.125	1.125
Throat Diameter, inches	0,188	0.190	0.197
ASCF Chamber Temperature, *F	66	63	64
ASCF Relative Humidity, %	34	46	40
Internal Pressure of Motor, psia	1580	1480	1100
Carbon Monoxide ^b , ppm	84	84	93
Curbon Dioxide ^b , ppm	1350	1324	1194
Nitrio Oxide ^b , ppm	2	1	1
Nitrogen Dioxide ^b , ppm	ND	D	ND
Hydrogen Cyanide ^b , ppm	ND	ND	ND
Ammonia ^b , ppm	ND	ND	ND
Total Suspended Particulate Matter, mg/m ³	31	28	29
Lead mg/m ³	18.6	1.5	14.1
Copper mg/m ³	0.002	0.00	0.01
Aluminum (as AL ₂ O ₃) mg/m ³	ND	ND	ND
Chromium mg/m ³	0.0	0.02	0.02
Zirconium Oxide mg/m³	<0.1	<0.1	0.06
iron, mg/m ³	0.33	0.06	0.06

Nominal exit diameter was 1.0 inches. However, this was an estimate only. Actual diameters could have varied between 0.75 and 1.25 inches.

NR: Not Recorded ND: Not Detected

b Maximum observed concentrations.

TABLE 6						
MEAN CONCENTRATIONS ACHIEVED IN ASCF CHAMBER						
Constituent	Propellant Formulations (approximate motor size)					
	D (75 g)	H (25 g)	L (22 g)	Q (63 g)	X (25 g)	
CO, ppm	330	295	344	85	195	
00 ₂ , ppm	1375	270	154	1250	561	
NH _m , ppm	BMDL	BMD L	BMDL	BMDL	BMDL	
NO, ppm	3.5	4	0.75	1.3	5.0	
NO ₂ , ppm	BMDL	BMDL	BMDL	BMDL.	BMDL	
HCN, jopm	BMDL	BMDL	BMDL	BMDL	BMDL	
HCL, ppm	BMDL	<1	114	BMDL	BMDL	
Particles, mg/m ³	70	100	43	30	45	
Pb, mg/m ³	40	0.6	2	16	0.18	
Cu, mg/m ³	4	0.7	4	0.01	0.45	
Al ₂ O ₃ , mg/m ³	BMDL	BMDL	3.5	BMOL	BMDL	
Cr, mg/m ³	BMDL	BMDL	0.5	0.01	1.3	
Cd, mg/m ³	BMDL	BMDL	0.13	BMDL.	BMDL	
sn, mg/m ³	BMDL	0.3	BMDL	BMDL	BMDL	

^{*} BMDL: Below method detection limit.

it was decided that determination of water vapor would be omitted from the measurements.

A determination of the carbon balance for the chamber indicates that the analytical measurements account for approximately 60% of the carbon in the formulation. For example, using the data in Table A-1 for Composition D, there are ca. 2.06 moles of carbon in the motor. Data from Run 5 of the "D" test indicates ca. 1.2 moles of C tied up as the oxides of carbon (CO and CO₂). The analysis of the vapor and particle phase organic constituents (see below) indicates that only a very tiny amount of C is tied up in the trace species. And even if all the non-metal material collected as particulates was pure carbon, such would only add ca. 26 mg/m³ of carbon, or about 0.043 moles. Thus, it would appear that a significant fraction of the carbon present in the motor itself (ca. 33%) is present in some form which is not amenable to conventional analyses. Without confirmatory data, the composition of such material would be highly speculative.

All of the formulations, despite the relatively small quantities of propellant fired in the chamber (ca. 1/7 to 1/20 of a typical size launch motor) produced substantial concentrations of carbon monoxide, ranging from a low of about 300 ppm/100 g of propellant for Composition O, to a high of nearly 1400 ppm/100 g for Composition L. The amounts of carbon dioxide produced varied considerably, from more than a factor of 10 greater than the CO produced, to only about half the amount of CO produced. Only very small quantities of nitric oxide were produced, and no measurable amounts of nitrogen dioxide were produced. The latter is not surprising, since the production of NO₂ is dependent on the square of the NO concentration²². If the concentration of NO is low, significant amounts of the dioxide will not be produced in the first 10 minutes following the firing of the motor (the duration of time for which the ASCF was sampled for the oxides of nitrogen). Essentially, no aminonia or hydrogen cyanide was found at levels greater than 1 ppm. In the two formulations which contained perchlorates, measurable levels of hydrogen chloride were found. However, the observed levels were not proportionate to amount of perchlorate present. For example, while Composition L had about 8x more perchlorate in the formulation than Composition H, the levels observed in the chamber were about 100x larger. There were a number of metals found in the airborne particles resulting from motor firings. Copper, aluminum (as the oxide), lead, tin, chromium, and cadmium were all found in measureable amounts. Probably the lead and cadmium are of the greatest concern from a health risk standpoint. Compositions D and Q, lead was found to be present in the diluted exhaust at levels greater than 10 mg/m³.

In Table 7 are listed the particle size distributions of the exhaust products for the formulations studied. The mass median aerodynamic diameters (MMAD) were all less than 2 μ m, indicating that the particles remaining airborne long enough to be collected by the sampling method were capable of being inhaled. Although Composition D had a measurably bimodal distribution, the higher of the two MMADs was still less than 5 μ m. Particles from Composition L had a somewhat smaller MMAD than of the other formulations, but the breadth of the distribution was larger.

TABLE 7

Particle Size Distribution Rocket Exhaust Particulate Matter Mean Values

Mass Median Aerodynamic Diameter (MMAD) and Geometric Standard Deviation (σ_g)

Composition	MMAD (um)	g
$D^{\mathbf{a}}$	1.46	1.86
н	1.44	1.77
L	0.807	2.14
Q	0.96	2.4

^a Composition D had a definite bimodal distribution: large particles had a MMAD of 3.6 microns, with $\sigma_g = 1.8$; small particles had a MMAD of 0.47 microns, with $\sigma_g = 1.7$.

Trace Constituents

Trace organic vapor phase constituents present in the exhaust atmospheres were determined by collection of samples on multi-sorbent traps, followed by analysis by thermal desorption GC/MS. Because of the sensitivity of the method, collection of sufficient sample was not difficult. However, the background levels of vapors in the chamber were very high, and as a result, made it very difficult to discern quantities of vapors arising from the firing of the rocket motor. Despite the fact that the chamber was flushed with clean air between most firings, background levels of collected constituents on chamber blanks were substantial (see Table 8). This suggests that there may be significant off-gassing of volatiles from materials adsorbed on the surfaces inside the chamber. Accurate quantitative determination of the constituents identified was exceedingly difficult, because it required determining the difference between two large values. Also, the largest peak

in many of the samples was determined to be a mixture of hydrocarbons that were not resolved, even by high-resolution chromatography. These may be unburned, volatilized waxes used in the manufacture of the test motors. In Appendix B, in Tables B-1 through B-4, are listed the various trace organic vapor phase components identified and quantified in the exhaust. The data is summarized in Tables 9 - 12. In this case, mean quantities were reported only if the compound was observed in two or more of the traps analyzed from the firing of a specific composition and if the compound was present at a level 50% greater than the highest level reported for any blank collected during the series of firings. Several comments are in order. First, as stated above, it was very difficult to obtain a truly "clean" chamber atmosphere into which to fire the motors.

Table 8

CONCENTRATION OF SELECTED CONSTITUENTS IN CHAMBER BLANKS

μg/m³	Concentration		Concentration	ug/m³	
TORKLIN			C ₃ -cyclopentane	52.4	
	Methylene chloride	119	C ₁₂ -cyclohexasiloxane	8.2	
	Methyl crotonate	2.1	C ₁₂ -cyclohexasiloxane	4.4	
	C ₆ -cyclotrisiloxane	23.9	C3-cyclopentane	7.4	
	C ₂ -cyclotetrasiloxane	7.5	Diethylphthalate	19.1	
	C ₃ -cyclopentane	25A	Pentadecane	2.1	
	Terpinene	8.8	Nonadecane	2.6	
	C ₁₀ -cyclopentasiloxane	129	Trimethylcyclobutanone	3.5	
	Naphthalene	8.8	, , , , , , , , , , , , , , , , , , ,		

Originally, it was believed that the siloxane compounds may have resulted from contamination of the multi-sorbent traps with a soap bubble solution which was used in measuring the sample flow rates in some of the earlier studies. (This potential for contamination has been confirmed by subsequent experiments in the laboratory). However, the siloxanes were also present in the blanks which were acquired in later experiments, in which only instrumental calibration of the flow rates were made. Thus, the siloxanes may be off-gassed byproducts of the detergents used to clean the chamber prior to the motor firings, or they may be true products of the propellant combustion. Significant amounts of siloxane have been seen in the vapor phases of several of the exhausts from various motors. In general, there appeared to be a greater variety of trace organics present in the vapor phase of the composition D and H exhausts. The fact that Composition L is predominantly inorganic probably contributes to this observation.

Table 13 summarizes the maximum observed concentrations of non-siloxane compounds found in the ASCF atmospheres for those constituents with levels greater than $10 \,\mu\text{g/m}^3$ (ca. 3 ppbv for benzene). For example, the average concentration for benzene was 17.6

 $\mu g/m^3$ or 5.4 ppb. Overall, the concentrations of these species were several orders of magnitude below the levels at which they are regulated for workplace exposures. One may conclude table 9

TABLE 9
ESTIMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS
COMPOSITION D

CONSTITUENT	APPROXIMATE CONCENTRATION*, ug/m³
Trichloroethane	0.4
Benzene	13.5
Trichloroethylene	2.0
Methyl crotonate	15.3
Toluene	10.5
C _e -cyclotrisiloxane	11
C ₂ -benzene	5.7
Phenylacetylene	2.7
Styrene	4.7
C _{3"} benzene	2.7
C ₃ -benzerie	3.9
Decane	1.5
Decane	0.9
Terpinene	0.7
C _e -cyclotetrasiloxane	15
Teripene	1.1
Undecane	0.8
Naphthalene	6.1
C ₃ -cyclopentane	1.3
Dodecane	0.7
C ₁₂ -cyclohexasiloxane	17.8
Hexadecane	1.1

^{*} Estimated by determination of mean value for at least 2 of traps analyzed, which must be at least 50% greater than the highest blank level observed. Levels have been corrected for blanks.

TABLE 10
ESTIMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS
COMPOSITION H

CONSTITUENT	APPROXIMATE MEAN CONCENTRATION", ug/m3
Trichlorofluoromethane	9.8
Trichloroethane	0.4
Benzene	17.6
Methylcrotonate	7.0
Toluene	2.2
Phenylacetylene	2.4
C ₂ -benzene	0.7
Heptene	₿.4
Cyanobenzene	18.0
C ₃ -benzene	1.4
C ₃ -cyclopentane	16.1
C ₁₄ -cycloheptasiloxane	2,2

^{*} Estimated by determination of mean value for at least 2 of traps analyzed, which must be at least 50% greater than the highest blank level observed. Levels have been corrected for blanks.

TABLE 11 ESTIMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS COMPOSITION L

CONSTITUENT	APPROXIMATE MEAN CONCENTRATION ¹ , ucl/m ³
Octamethyl-cyclotetrasiloxane	3.5
Octamethy-cyclotetrasiloxane	2.6

^{*} Estimated by determination of mean value for at least 2 of traps analyzed, which must be at least 50% greater than the highest blank level observed. Levels have been corrected for blanks.

TABLE 12 **ESTIMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS** COMPOSITION Q

CONSTITUENT	APPROXIMATE MEAN CONCENTRATION". µg/m³
trichlorofluromethane	0.6
hexamethyl cyclotrisiloxane	0.2
trimethyl-cyclobutanane	23.5
octamethyl-cyclotetrasiloxane	0.3
phthalate	8.5

^{*} Estimated by determination of mean value for at least 2 of traps analyzed, which must be at least 50% greater than the highest blank level observed. Levels have been corrected for blanks.

TABLE 13 NON-SILOXANE VAPOR PHASE COMPOUNDS PRESENT IN MOTOR EXHAUSTS AT CONCENTRATIONS GREATER THAN 10 $\mu g/m^3$ in ASCF CHAMBER

Concentration, µg/m ³	<u>Composition</u>	M a x i m u m
Benzene	D,H	17.6
Methylorotonate	Н	15.3
Toluene	Н	10.5
Cyanobenzene	н	18.0
C ₃ -cyclopentane	н	16.1
tri methyl-cyclobutanone	Q	23.5

Composition only listed if present at >10µg/m³ in that particular exhaust atmosphere.

from this that the levels of trace organic vapor phase constituents are probably not of concern from a health risk standpoint under most conceivable use scenarios. Only by repeated firings from an enclosed space could these materials reach toxic levels. And before toxic levels of the organic vapor phase species was reached, CO levels would probably be lethal.

Determination of the higher molecular weight particulate-phase constituents proved difficult for the samples from the initial runs of Composition D (the first propellant studied). Because of filter clogging immediately following the firing of the test motors, the number of particles collected was very small. For example, the largest amount of sample collected on any of the initial runs was 40 mg. This was dispersed over a 4"-diameter Teflon-coated glass fiber filter. Initial GC analysis of the extracts indicated very low levels of hydrocarbons. Next, the extracts were subjected to GC/MS analysis with selected ion monitoring (SIM). SIM has the advantage of identifying species from selected characteristic ions, as opposed to using the entire ionic fragmentation pattern. Due to the small amounts of material collected on the filters, quantities detected in the particulate filter extracts were considerably below our normal detection limits for the target constituents. For that reason, in the preceding studies, the particulate collection system was modified to be a two-stage filter. This approach proved to be much more successful at collecting greater amounts of particles. In Table 14 are listed the polynuclear aromatic hydrocarbons (PAH's) determined in the exhaust particles collected from the firings of Compositions D, H, L, and Q. In addition, a comparison is also made between these levels and those determined for outside air at a military base. A few comments are in order. First, only data for particles collected in the coarse filters are reported. The fine filters collected very few particles (1 - 5 mg), and thus many of the levels determined are

at or near the instrumental limits of detection. Nitro-PAHs were determined only for Composition D and H exhausts. The levels

Table 14

Concentrations (µg/g) of Nitro-PAH and PAH in Particulate Matter Collected on Coarse Filters at ASCF: Comparison with Outdoor Air Particulate Collected at U.S. Army installation

					Propolent Edward	75				F. Carson
	Composition	aiton D		Composition H		Composition L	i i	Compo	Composition Q	Outside Fir
Constituent	Run 5	Run E	Run 1	Run 3	Run 4	Pun 1	Run 2	Run 1	Pun 2	
2-nitrofluorene	BMDL	TOMB	950.0	19070	20.0	GN	ND	ON	QN	BMDi.
9-nitroantinacene	0.14	HOMB	BIADL	ВМОС	BMDL	QN	CIN	CN	ON	BMDL
1-nitropyrene	Вирс	BMDL	BWDL	BMDL	BMOL	ND	NO	GN	QN	BMDL
benz(a)anthracene	0.22	0.19	0.19	0.15	0.15	0.22	0.19	1.40	0.81	4.9
chrysene	0.26	63.0	6.55	1970	0.40	0.05	BMDL	4.70	2.28	11.5
benzo(b+j+k)fluoranthrene	25.0	1.7	1.1	1.4	1.1	6 OS	0.13	1.60	9.75	15.7
berzo(e)pyrene	0.26	0.66	0.82	0.92	0.86	1.18	0.44	1.40	0.54	9.4
benzo(a)pyrene	0.39	16.0	0.59	0.52	0.37	0.05	BMDL	1.30	0.41	8.0
3-methylcholanthrene	TOMB	ног	BMDL	BMDL	BMDt.	BMOL	SMOL	0.54	BIMOL	BMDL
dibertz(a,j)anthracene	0.13	1.9	0.51	0.52	0.15	0.24	0.14	2.10	1.05	3.7
indeno[1,2,3-cd]pyrene	0.47	0.63	1.4	9.63	0.69	1.74	0.64	1.70	1.06	17
dibenz(a.h)anthracene	0.13	BNDL	0.23	0.16	0.14	0.13	0.3:	5.80	1.63	3.9
benzo(g.h.jiperyiene	2.0	BMDL	3.2	32	BMDL	5.17	1.39	3.80	1.87	21.8

ND: Not detected

BMDL: Below method detection limit

* Data from Griest, et al., 1968

determined in these earlier studies were so low that a repeat of the complex analyses did not seem warranted. Despite the very low levels of PAH found in the particulates, the results are fairly consistent from sample to sample. The concentrations of a few selected PAHs in the particles of the O exhaust were somewhat higher, but not by more than an order of magnitude. The only nitro-PAH which was identified consistently in the exhausts of the motors was 2-nitrofluorene, in the exhaust of Composition H. Its concentration ranged from ca. 30 - 60 ng/g. Most of the other PAHs identified and quantified in the exhausts were present at levels less than 1 μ g/g. The outdoor air particulate sample with which a comparison is made was acquired outside a large motor pool building at Fort Carson, Colorado, in the mid-1980's as background data for another project supported by the USABRDL²³. A major contributor to the particulates in this sample was expected to be diesel- and gasoline-powered motor vehicle exhaust. The comparison indicates that, with the exception of 2-nitrofluorene, the PAH content of the rocket exhaust particulate is substantially less than (usually by a factor of 10 or so) that of outdoor air particulate matter found in a semi-urban setting at a military base. Also, the BaP content of the exhaust particulates is about half that of cigarette smoke particulate matter²⁴. Because of the relatively low concentrations of the PAH in the particle phase, the airborne concentrations of the PAHs are very low. For example, at the maximum particle concentration of 'mg/m³ in the ASCF chamber (as a surrogate for human exposure conditions), the highest observed airborne benzo(a)pyrene concentrations would be approximately $0.09 \,\mu\text{g/m}^3$, and that of benzo(g,h,i)perylene would be $0.36 \,\mu\text{g/m}^3$. At these levels, the airborne PAHs and nitro-PAHs in the rocket exhaust probably do not represent an additional health hazard above that of normal urban air particulates for the troops using such weapon systems.

SUMMARY AND RECOMMENDATIONS - PART 1

The exhaust products from the firing of 2x2 rocket motors in a 20 m³ test chamber have been characterized. The data indicated that of all of the toxic and/or carcinogenic species present, most were present at very low levels. Of the major toxic constituents, carbon monoxide was the most universally present. Interestingly, the formulation with the greatest fraction of inorganic material (Composition L) yielded the highest concentration of CO in the ASCF chamber per 100 g of propellant. Nitric oxide was present in all of the exhausts, but typically at levels less than 5 ppm in the 20 m³ chamber. No ammonia or hydrogen cyanide was observed at levels greater than 1 ppm. Levels of HCl were observed in the Composition L exhaust which were very high (>100 ppm), and it seems likely that firing of this propellant in an enclosed space would produce very high concentrations of this toxic species. However, no data was obtained as to whether the HCl was present in the particle or the vapor phase.

Particles were present at substantial levels in all of the exhaust atmospheres ($\geq 30 \text{ mg/m}^3$). Particle size distributions indicated that for those particles which could be collected under the sampling conditions employed, virtually all of the material was within an inhalable size range ($< 10 \,\mu\text{m}$ mass median diameter). A large fraction of the airborne particles were comprised of metallic species. Copper and lead (especially the latter) were present in the ASCF atmospheres of many of the motor types at levels above those regulated by OSHA.

However, the levels of PAHs and nitro-PAHs in the particulates were very low. Comparison with airborne particulate matter collected at a military installation indicated that the PAH content of the particles was about 1/10 that of outdoor air particles.

Quantitative determination of the organic vapor phase constituents was very difficult due to both the very low levels at which they were present and the presence of large amounts of other species in the background samples. The latter included a large number of cyclosiloxanes, probably from the off-gassing of the chamber walls following cleaning. Only a few exhaust components were found at levels greater than a few ppb. These included benzene, toluene, methylcrotonate, and cyanobenzene. These were typically present at levels less than 10 ppb in the chamber.

From the standpoint of follow-on studies, recommendations depend on the goal of such efforts. If the goal is to refine the comparison between the observed chemistry and the predicted compositions, then the determination of methane (CH₄) and molecular hydrogen (H₂) would be very desirable. Such is a very difficult task, and would likely require a dedicated real time mass spectrometer to make such measurements. However, the determination of such constituents would not significantly further the understanding of potential health risks of the exhaust products, since neither are toxic species.

Since these experimental studies were performed, there have been two developments in the field of analytical chemistry which, if applied to these studies, could significantly improve the quality of the data generated, especially with regard to the determination of volatile organics. First, a number of carbon based adsorbents are now commercially available which have many fewer artifacts than the Tenax used in these studies. Were the sorbent traps used in these studies replaced with the new systems, it is likely that the number of artifacts present in the samples would be significantly reduced, minimizing the complexity of the interpretation of the data. Also, the recent development of direct sampling ion trap mass spectrometry (DSITMS) for the determination of airborne vapor phase constituents is significant. DSITMS could be used to provide determination of a number of volatile species of toxicologic interest in real time, much like an NDIR analyzer provides real time measurement of CO or CO₂. Transportable DSITMS systems are now under development at ORNL for air toxics monitoring at environmental remediation sites, and such technology could be useful for other scenarios.

Finally, the most important recommendation for future work is the determination of the exhaust product composition under actual field conditions, firing full scale motors. There are two important reasons for this. First, the data in this study indicates that changes in the physical properties such as burn time can have a radical effect on exhaust composition. This suggests that it will be difficult to obtain highly realistic data unless true field measurements can be made. Secondly, firing of the test motors in an enclosed chamber causes significant run-to-run background contamination problems. Perhaps the firing of motors in single use, disposable structures, such as large nylon tents, would eliminate much of the contamination problem.

PART 2 - MODELING FOR HEALTH HAZARD PREDICTION

INTRODUCTION

Over the past 30 years, several digital computer programs have been developed at the National Aeronautics and Space Administration's Lewis Research Center to carry out the considerable numerical calculations involved in the determination of the equilibrium composition of complex chemical mixtures at high temperatures²⁵, ^{26,27}. Updates to these programs have incorporated improved computational methods and adaptations to improvements in computer speeds and capacities. In accordance with a suggestion from project management, we have used the 1986 version²⁸ of the program described in Reference 27 to obtain estimates of the composition of the exhaust gases from four different solid propellants. This was referred to as the NASA-Lewis model, version CET-86. The program obtains estimates of the equilibrium composition of a mixture of several components by minimizing either the Gibbs function or the Helmholtz function. If temperature and volume are constant, the Helmholtz function of a system decreases during an irreversible process, becoming a minimum at equilibrium; if temperature and pressure are constant, the same is true of the Gibbs function²⁸. All gases are assumed to be ideal, even if small amounts of condensed species are present. Calculations can be done for any one of six combinations of assigned state parameters (e.g., temperature, pressure, density, entropy, and enthalpy); additionally, theoretical rocket performance data can be obtained. The assumptions involved in the calculation of rocket performance parameters are listed in Ref. 3. Briefly, they are: (1) validity of the one-dimensional form of the continuity, energy, and momentum equations: (2) zero velocity (no gas movement) in the combustion chamber; (3) complete combustion (in the sense that all reactants are converted to products); (4) adiabatic combustion; (5) isentropic (adiabatic and reversible) expansion; (6) homogeneous mixing; (7) ideal gas law; and (8) zero temperature and pressure lags between condensed and gaseous species. An extensive discussion of these assumptions and their validity can be found in Reference 30.

The program first determines combustion properties in the rocket motor chamber and then determines exhaust composition and properties at various stations in the nozzle. Since our propellants were fired in motors having a range of exit diameters, we used the feature of the program that allows estimation of exit compositions for a set of several exit to throat area ratios. (In this case, the throat of the motor is considered to be the choke point, or opening of the smallest diameter. The exit is the exit of the motor nozzle. Using these definitions, the ratio of the exit:throat areas, A_c/A_t , must always be larger than 1.0.) In Table 15 are listed the ranges of exit/throat area ratios possible for each motor. In each of the predictions, we used the design pressure as the combustion chamber pressure. The throat pressure is defined to be the pressure at which the flow velocity is equal to the velocity of sound.

The iterative procedures used by the program are discussed in detail in Reference 27. Briefly, combustion temperature and equilibrium compositions are determined for an

TABLE 15

EXIT/THROAT AREA RATIO RANGES TEST MOTOR CONFIGURATIONS

COMPOSITION	ARMACIAR THROAT DIAMETER, INCHES	MAXIMUM THROAT NOMINAL BUT DIAMETER, INCHES	NOMINAL EXIT MININ DIAMETER, INCHES A./A,	NO.	MAXORACIA	NOMBAR
D	0.50	0.707	1.0	1.125	6.25	4
I	0.261	0.261	1.0	8.26	22.94	14.7
1	0.28	0.28	1.0	71.7	19.93	12.76
۵	0.188	0.197	1.125	:4.49	44.21	35.06

These are estimated exit diameters. Actual exit diameters varied between 0.75 and 1.25 inches.

assigned chamber pressure and the reactant enthalpy. From the combustion compositions and temperature, the combustion entropy can be determined. Assuming isentropic expansion, the program then obtains a first estimate for the ratio of chamber pressure to throat pressure; from the throat pressure and the entropy, the actual gas velocity, the speed of sound, and the Mach number can be calculated; if the Mach number is not sufficiently close to unity, the pressure ratio is corrected and a further calculation of Mach number is done. Exit conditions for assigned exit-to-throat area ratios are also obtained from an initial estimate of the ratio of the chamber pressure to the exit pressure, followed by iterative correction. The converged value of pressure ratio for each area ratio is used as the initial estimate for the next area ratio.

We obtained the program, test case input, and output from the NASA Lewis Research Center²⁸. We were able to compile the program on our VAX 6000-420 computer and were able to reproduce the test case output with no problems. In our series of calculations the program has performed in a very reliable manner; we have had no difficulties with any of the iterative procedures failing to converge.

RESULTS AND DISCUSSION

In Tables 16 - 19 are listed the predicted mole fractions of various exhaust components over the range of potential ratios of exit areas to throat areas. (The full computer printouts for selected runs for each composition are included in Appendix C.) Note that there have been two independent checks of these computations³¹. First, CET86 computations of mole fractions of Composition H were checked against the "Blake" code and found to be in excellent agreement. (See discussion regarding Table 23, below). Secondly, the calculations were verified by running MUCET, a modified version of CET86 prepared by Eli Freedman & Associates for use with microcomputers. Results were identical to those reported here.

The model has a cut-off feature. Essentially, it can predict the levels of over 100 compounds, but will only report out those mole fractions which are larger than a user-specified value. For this work, a mole fraction of 5×10^{-7} was employed. The rationale for using this value was as follows. If it is assumed that there are about 2 moles of exhaust products in the ASCF chamber following a firing, a mole fraction of 5×10^{-7} would be equivalent to 1×10^{-6} moles of the particular product in the chamber. This assumption was in fact supported by the chemical characterization data (see above). For a compound with a nominal molecular weight of 100 g/mole, this translates to a concentration of $5 \mu g/m^3$, or 1.5 ppbv, in the 20 m³ ASCF chamber. Few airborne compounds are considered to be a significant health risk at such low concentrations. In addition, unless a very large sample is acquired, it is usually difficult to confidently quantify such species at these low levels.

Using this criterion, with the exception of the metals in the exhaust products, the only compounds which were predicted to be present in the exhaust were carbon monoxide, carbon dioxide, hydrogen, water vapor, ammonia, and methane. In none of the cases did the model predict significant quantities of nitric oxide, despite the fact that NO was observed at levels near to or greater than 1 ppm on each burn.

Table 16
Predicted Mole Fractions as a Function of Exit/Throat Area Ratios
Composition D
Chamber pressure = 2500 psia

A_/A ₁	1.1300	1,8600	2.2500	3,1300	5.1700	6.2500
Exit T, •K	2256.4	1894.1	1788.5	1626,8	1419.6	1355.0
			Mole fraction	8		
co	.37059	.35871	,35390	.34478	,32876	.32241
CO,	.14561	.15759	.16241	.17154	.18756	.19391
Hg	.11245	.12448	.12931	,13844	,15445	.16080
H ₂ O	,23930	.22754	,22273	.21362	.19760	.19126
Cu(Total)	2.3949x10 ⁻³	2,4058x10 ⁻³	2.4062x10 ⁻³	2,4063x10 ⁻³	2.4063x10 ⁻³	2.4062x10 ⁻³
Pb(Total)	2.2823x10 ⁻³	2.3222x10 ⁻³	2.3276x10 ⁻³	2,3325x10 ⁻³	2,3352x10 ⁻³	2,3363x10 ⁻³
NHa	1.1109x10 ⁻⁵	8.7647x10 ⁻⁸	8.4223x10 ⁻⁴	8,2080x10 ⁻⁸	8.6068x10 ⁻⁸	8.8299×10 ⁻⁶
GO/GO ₂	2,545	2,276	2.179	2.010	1.753	1.663
NH ₃ /CO ₂	7.629×10 ⁻⁸	5.562x10 ⁻⁵	5.562x10 ⁻⁸	4,785,x10 ⁻⁵	4,589x10 ⁻⁵	4.554x10 ⁻⁵
Chamber pressure = 3000 pela						
AJA	1,1300	1.8600	2.2500	3,1300	5.1700	6.2500
Exit T,•K	2256.8	1893.7	1788.1	1626.4	1420.8	1355.7
	s. 		Mole fractions	1		
СО	.37061	.35869	.35388	.34475	.32888	.32248
CO	14560	.15761	.16243	.17156	.18744	.19384
На	.11245	.12450	.12933	,13846	.15433	,16073
H⁵O	.23933	.22752	.22271	21359	.19772	.19133
Cu(Total)	2,3968x10 ⁻³	2.4059x10 ⁻³	2.4062x10 ⁻³	2.4634x10 ⁻³	2.4062x10 ⁻³	2.4063x10 ⁻³
Pb(Total)	2.2819x10 ⁻³	2.3219x10 ⁻³	2.3274x10 ⁻³	2.3322x10 ⁻⁸	2.3355x10 ⁻³	2.3365x10- ³
NH₃	1.3315x10 ⁻⁵	1.0519x10 ⁻⁵	1.0110x10 ⁻⁸	9.8554x10 ⁻⁸	1.0279x10 ⁻⁵	1.0565x10 ⁻⁵
CO/CO2	2.545	2.276	2.179	2.010	1.755	1.664
NH ₃ /CO ₂	9.145x10 ⁻⁸	6.674x10 ⁻⁸	6.224x10 ⁻⁸	5.745×10 ⁻⁸	5.484x10 ⁻⁸	5.450x10 ⁻⁶

A_/At: Ratio of the exit area to throat area

Table 17 Predicted Mole Fractions as a Function of Exit/Throat Area Ratios

Composition H

Chamber pressure = 5000 psia

ad/At	8.3000	10,000	15.000	23.000
Exit T, *K	1575.0	1507.1	1372.2	1251.4
		Mole fraction	ons	
co	.25795	.25360	.24311	.23079
CO ⁵	.25776	.26229	.27332	.28608
H ₂	8,5609x10 ²	9.0087x10 ⁻²	.10095	.11357
H³O	.24704	.24278	.23242	.22018
нсі	4.5892x10 ⁻⁴	3.4824x10 ⁻⁴	1.8022x10 ⁻⁴	8.1443x10 ⁸
KCI	1.3356x10 ⁻²	1.2799x10 ⁻²	1.0928x10 ⁻²	7.7913x10 ⁻³
KCI(I)ª	0.0000	0.0000	0.0000	1.5516x10 ⁻³
NH ₃	2.5247x10*	2.5729x10 ⁻⁴	2.7684×10 ⁻⁴	3.0523x10 ⁻⁶
CO/CO ₂	1.0007	.9669	.8895	.8067
HCI/CO,	1.7804x10 ⁻³	1.3277x10 ⁻³	6.5937x10 ⁻⁴	2.8469x10 ⁻⁴
NH3/CO2	9.7947x10 ⁴	9.8094x10 ⁻⁴	1.0129x10 ⁻⁶	1.0669x10 ⁻⁵

🛻/A: Ratio of the exit area to throat area a: Liquid

Table 18
Predicted Mole Fractions as a Function of Exit/Throat Area Ratios

Composition L

Chamber pressure = 2500 psia

				
A _b /A _t	7.2000	10,000	15.000	20,000
Exit T, *K	1281.3	1175.4	1059,3	986.5
		Mole fract	ions	
co	.14681	.13536	,11945	.10732
COs	.11988	.13129	.14697	,15895
НСІ	.20072	,20084	,20139	.20167
H,O	.25903	.24758	.23169	.21983
Al _g O ₃	4.5708x10 ⁻⁸	4.5704x10 ⁻³	4.5672x10 ⁻³	4.5669x10 ⁻⁰
BaCl ₂ (Total)	4.6571x10 ⁻⁴	4.6849x10 ⁻⁴	4.6850x10 ⁻⁴	4.6849x10 ⁻⁴
Cr ₂ O ₃ (a)	8.1900x10 ⁻⁴	8.1892x10 ⁻⁴	8.1835x10 ⁻⁴	8.1831x10 ⁻⁴
Cu(a)	0.0000 0	1.3842x10 ⁻⁴	8.3239x10 ⁻⁴	1.1224x10 ⁻⁰
NHa	9,6149x10 ⁴	1.0736x10 ^{.5}	1.2947x10 ⁻⁵	1.5182x10 ⁻⁵
CO/CO ₂	1.225	1,031	0.813	0.675
HCI/CO,	1,674	1.530	1.370	1.269
NH3/CO2	8.020x10 ⁻⁸	8.177x10 ⁻⁵	8.809x10 ⁻⁵	9.551x10 ⁻⁶

A₂/A₁: Ratio of the exit area to throat area 50lid

Table 19
Predicted Mole Fractions as a Function of Exit/Throat Area Ratios

COMPOSITION Q

CHAMBER PRESSURE = 1480 psia

Ae/At	32.600	35.100	35,800
Exit T, *K	Γ, •K 918.9 904.4		900.7
	Mole I	ractions	
00	2.1030x10 ⁻¹	2.0683x10 ⁻¹	2.0590x10 ⁻¹
00,	1.8391x10 ⁻¹	1.8732×10 ⁻¹	1.8823x10 ⁻¹
H ₂ 0	1.0248x10 ⁻¹	9,9504x10 ⁻²	9.8735x10 ⁻²
NH ₃	1.5108x10 ⁻⁸	1.5668x10 ⁻⁵	1.5810x10 ⁻⁵
ZrO ₂ (Total)	2.3203x10 ⁻³	2.3216x10 ⁻⁹	2.3220x10 ⁻³
Pb	1.0228x10 ⁻³	1.0234×10 ⁻³	1.0236x10 ⁻³
CH4	7.2073x10 ⁻⁴	1.0005x10 ⁻³	1.0889x10 ⁻³
BI	1.0055x10 ⁻⁵	1.3159x10 ⁻⁵	1.3826x10 ⁻⁶
CO/JO ⁵	1.143	1.102	1.094
NH ₃ /CO ₂	8.215x10 ⁻⁶	8.364x10 ⁻⁵	8.890x20 ⁻⁶

A,/A: Ratio of the exit area to throat area

For many of the input parameters, the model was not particularly sensitive to substantial changes. For example, for Composition H, a nearly 3-fold change in the exit/throat area ratios decreased the predicted mole fraction of CO by less than 12%. The ratio of major components was not significantly altered. For Composition D, a 5-fold change in the A_e/A_t reduced the CO/CO_2 ratio by 35%. The ratios of minor to major components were typically affected to a greater degree. In many cases, mistakes made in the original entry of data into the model were difficult to identify, since the mistaken or modified entry resulted in such a small change in the data output. For example, considerable effort was place into obtaining or calculating the best heats of formation for compounds present in the formulations. However, an exact value may not be particularly critical to the modeling projections. For example, in Table 20 are compared the mole fractions predicted by the model for a $\pm 5\%$ change in the heat of formation of ammonium perchlorate, which comprises nearly 75% of the starting formulation. The results of the manipulation show only minor changes in the predicted mole fractions. For example, the predicted mole fraction of HCl changed only in the fourth decimal place.

From the standpoint of predicting the composition of the exhaust products in the chamber, the model was not particularly effective. As stated previously, in no case did the model predict NO to be present at levels above 10 ppb, even though NO levels were experimentally observed near 1 ppm. In Table 21 are compared the ranges of observed and predicted ratios of carbon monoxide to carbon dioxide in the ASCF chamber. For Composition H, the predicted values were very close to those observed. For Composition L, the model was accurate to within a factor of 2 - 3. For the other two formulations tested, there was substantial disparity between observed and predicted values. In both of these cases, the model predicted a much higher fraction of CO to be present than that which was observed. If the model had been used to make a health risk projection, the risk from CO exposure would have been considerably overestimated.

The comparison of observed and predicted absolute concentration levels in the ASCF chamber is a much more complex task. Briefly, the moles of the elements present in the formulation were computed. Since we did not determine water vapor or hydrogen gas in the chemical characterization studies, it was assumed that all of the H present in the formulation was converted to water vapor. (From a functional standpoint of predicting the concentrations of other species, it makes no difference if the H present existed as water vapor or H_2 gas.) Next, the total number of moles measured in the chamber was calculated, assuming 100% efficiency of conversion of H to water in the chamber. Finally, the mole fractions of the various species were multiplied by the total number of moles present, and divided by the chamber volume, in order to estimate chamber concentrations of the target species. The results of these calculations are summarized in Table 22. In general, the model was very good at predicting the concentrations of metallic species. In the case of zirconium oxide for Composition Q, and copper for Composition D, there was substantial over-estimation of the concentrations. This may be due to settling of particulates containing

TABLE 20
Effect of ± 5% Shift in Heat of Formation of Ammonium Perchlorate
Composition L

Predicted Mole Fractions

H, ≈ -74109. cal/mole						
A/A	7.2	10.0	15.0	20.0		
Predicted Temperature, *K	1248.8	1146.3	1033,7	963.8		
СО	.14393	.13194	.11561	.10325		
co,	.12259	.13431	.15041	.16255		
CO/CO ₂	1,17	.98	.77	.64		
H ₂ O	.25526	.24320	,22699	.21523		
H ₂	.19284	.20402	.21948	.23068		
HCI	.19924	.19992	.20044	.20076		
N _s	7.833x10 ⁻²	7.826x10 ⁻²	7.822x10 ⁻²	7.823x10 ⁻²		
Cu(s)	1.583x10 ⁻³	2.442x10 ⁻³	3.070x10 ⁻³	3.331x10 ⁻³		
NH _a	1.143x10 ¹⁸	1,284x10 ⁻⁵	1.566x10 ⁻⁵	1.836x10 ⁻⁶		
H, = -67051. cal/mole						
AJA	7.2	10.0	15.0	20.0		
Predicted Temperature, *K	1300.9	1194.0	1075.7	1001.2		
co	.14912	.13778	.12215	.11017		
CO,	.11748	.12854	.14394	.15578		
CO/CO ₂	1.27	1.07	.85	.71		
H ₂ O	.26048	.24902	.23337	.22157		
H _z	.18794	.19841	.21330	.22469		
HCI	.19898	.19975	.20032	.20059		
N ₂	7.836x10 ⁻²	7.827x10 ⁻²	7.821x10 ⁻²	7.820x10 ⁻⁸		
Cu(s)	1.257x10 ⁻³	2.240x10 ⁻³	2.958x10 ⁻³	3.260x10 ⁻⁵		
NH ₃	8.885x10 ⁻⁶	9.774x10 ⁴	1,169x10 ⁻⁸	1.367x10 ⁻⁸		

AJA: Ratio of the exit area to throat area

these species before they could be collected. For Compositions D and Q, the model substantially over-predicts CO and underestimates the amount of CO_2 produced. In the cases of the formulations which were expected to produce measurable amounts of HCl, the model predicted more HCl than was measured in both cases: It could be that in this case, the acquisition of the sample could be suspect. First, some of the HCl or potassium chloride could have been adsorbed on particulate matter which settled very rapidly in the chamber. In this case, the material would not reach the input to the continuous HCl analyzer. In addition, some of the HCl may have been lost in the short lengths of Teflon tubing leading from the chamber atmosphere to the analyzer.

TABLE 21
COMPARISON OF OBSERVED AND PREDICTED
CARBON MONOXIDE: CARBON DIOXIDE RATIOS

	Obser	ved	Predi	cted
Propellant Composition	Minimum	Maximum	Minimum	Maximum
D	0.0924	0.2265	1.663	2.545
Н	1.028	1.160	0.8067	1.0007
L	1.817	2.473	0.675	1.225
Q	0.0622	0.0779	1.094	1.143

In terms of the trace organic vapor and particle phase constituents, the model correctly predicts that the concentrations of these species will be low. In fact, the observed levels of such species as benzene and benzo(a)pyrene were much less than 100 ppbv, or $1 \mu g/m^3$, respectively. However, the number of toxic species which the model considers is limited, and it is certainly conceivable that a compound not considered by the model could be present at sufficiently high levels to warrant some health risk consideration.

LIMITATIONS AND MODIFICATIONS

In addition to not considering all of the toxic species likely to be produced by the ignition of a predominantly organic matrix, the model does have several limitations. First, it is an equilibrium based system, and does not take into account those synthesis pathways which

may be governed predominantly by kinetic processes. Secondly, it assumes ideal gas behavior on the part of all of the gases produced. This assumption is not likely to be accurate over the entire range of conditions existing inside the rocket motor. However, from a practical standpoint, this may not be a severe limitation. For example, the magnitude of non-ideal gas effects depends primarily on the density and the temperature in the system. For the system in question, the largest densities occur in the chamber. Interestingly, the most dense gas (H), has a density of only 0.037 g/mL, which is not sufficiently large to induce substantial deviations from the ideal gas law. To illustrate this point. Freedman³¹ has used the "Blake" code to compute chamber concentrations (at 340.23 atmospheres pressure and a temperature of 3167° K) assuming both ideal and real gas equations of state. This was performed for Composition H, whose exhaust products were capable of reaching some of the higher temperatures in the study. The results are listed in Table 23. It is clear that the differences between the real and the ideal gaseous equations of state are very small. And although there are differences between the NASA-Lewis results and those from the "Blake" code, the differences are negligible from a practical standpoint and are due to differences in the thermodynamic data bases themselves.

Finally, and probably most importantly, the model assumes that all of the chemical processes are frozen at the point at which the exhaust gases exit the motor. There is a considerable body of evidence to suggest that this is not the case. For example, the model predicts that no significant production of NO will occur for any of the formulations tested. However, NO was in fact observed. We believe that its presence is due to the effect of the heated exhaust gases on the ambient air in the chamber. That is, the heat from the motor firing causes the formation of nitrogen monoxide. The production of NO is probably proportional to the duration of the flame contact with the air. For example, during run No. 5 for Composition D, the shock wave from the firing of the motor caused some damage to the chamber. A different nozzle was installed on the test motor used for burn #6. This lengthened the burn time, and reduced the pressure of the burn. Such resulted in some substantial differences between burns #5 and #6 for the Composition D motors. The change in the NO concentration is considerable. Probably, the increase in time that the flame is in contact with the air causes much more NO to be produced. Note also the change in the CO concentration from Run No. 5 to Run No. 6.

Following consultations with Dr. Eli Freedman, we decided to test the hypothesis that including a step in the computer calculations which would determine the influence of mixing the predicted exhaust gases with ambient air would lead to a more accurate prediction of the observed gas concentrations in the chamber. The model was revised to mix the exhaust gases with the ambient air at fixed ratios and at varying pressures and temperatures. As an example, the exit composition from propellant D (a formula which had initially yielded a relatively inaccurate prediction of the observed CO/CO₂ ratio) was selected as a "fuel" which could be mixed with air. Initial exit pressure and temperature were set at 39.5 atmospheres and 1837 °K, respectively. The "fuel" was mixed with ambient air in the ratios given in Table 24 to yield equilibrium compositions at two arbitrarily selected lower pressures. As indicated in Table 24, there was a substantial decrease in the CO/CO₂ ratio. The resulting ratio is much closer to that which was

observed experimentally than the ratio predicted by the unmodified model, suggesting that there is considerable mixture with ambient air and conversion of carbon monoxide to carbon dioxide between the vicinity of the motor exit and the analysis train. That the model does not consider the influence of mixing with ambient

TABLE 22

COMPARISON OF OBSERVED AND PREDICTED CONCENTRATIONS OF EXHAUST CONSTITUENTS IN ASCF CHAMBER

CONSTITUENT	COMPOSITION D	O NOLL	COMPOSITION H	ITON H	COMPOSITION	THON L	COMPOSITION O	THON Q
	Observed®	P-redicted	Observed	Predicted	Observed	Predicted	Observed	Predicted
Carbon Monoxide, ppm	282	843	962	240	154	171	84	542
Carbon Dioxide, ppm	1245	238	270	248	344	188	1324	491
NO, ppm	22	O.	3.7	O	0.75	ທີ	1	ď
KCI/HCI, ppm	BMDL	o.	<1	14	114	270	BMDL	œ
Cu, mg/m³	4.0	41	BMDL	O	4.5	3.6	0.02	O
Al ₂ O ₃ , mg/m³	BMDL	o	BWDL	O°	6.8	6.1	BMDL	ď
Pb, mg/m³	37	55	BMDL	o	16	21.9	BMDL	O.
ZrO, mg/m³	BMDL	Ð	BMDL	O.	<0.1	29.5	BMDL	Û

* Run #5

b Average of Runs 1,3, & 4

c Average of Runs 1 - 4

d Gaseous components means of Runs 1, 2, 3; Particle component means of Runs 1 & 3

Predicted using assumption that all H in formulation of H₂O during burn. See Text.
• Predicted mole fraction of component less than 0.5×10^6 cut off.
BMDL. Below Method Detection Limit

TABLE 23

Effect of Choice of Gaseous Equation of State on Computed Mole Fractions for Composition Ha

	BLA	KE	NASA-Lewis
NAME	IDEAL	REAL	IDEAL
CO	0.2928486	0.2932262	0,29422
H ₂ O	0.2679565	0.2685877	0.27100
CO2	0.2183805	0.2180917	0.21722
N ₂	0.1346118	0.1346414	0.13459
H ₂	4.927155 x 10 ^{.2}	4.886758 x 10 ⁻²	4.8588 x 10 ⁻²
HCI	8.636553 x 10 ⁻³	8,599959 x 10 ⁻³	
кон	7.785912 x 10 ⁻³	7.757804 x 10 ⁻⁵	
коі	7.232547 x 10 ⁻³	7,278343 x 10 ⁻³	
NO	1.281355 x 10 ⁻³	1.270143 x 10 ⁻³	
02	5.792795 x 10 ⁻⁴	5.639095 x 10 ⁻⁴	
NHa	8.57131 x 10 ⁻⁵	8.776596 x 10 ⁻⁶	
CH ⁵ O	2.823712 x 10 ⁻⁶	2.871074 x 10 ⁻⁶	
HCN	2.529327 x 10 ⁻⁶	2.631338 x 10 ⁻⁶	
Cl ₂	2.863636 x 10 ⁻⁷	2.811794x10 ⁻⁷	
COCI2	2.512875 x 10 ^{.10}	2.628192 x 10 ⁻¹⁰	
K	1,164592 x 10 ⁻³	1.15023 x 10 ⁻³	8.4006 x 10 ⁻⁴
COCI	1.79761 x 10 ⁻⁶	1.84523 x 10 ⁻⁶	
ОН	6.396093 x 10 ⁻³	6.222507 x 10 ⁻³	
ко	5.224935 x 10 ⁻⁵	5.182151 x 10 ⁻⁵	
н	3.155921 x 10 ⁻³	3.057469 x 10 ⁻⁸	
0	2.448266 x 10 ⁻⁴	2.370879 x 10 ⁻⁴	
N	1.259862 x 10 ⁻⁶	1.24317 x 10 ⁻⁶	
СНО	2.055275 x 10 ⁻⁵	2.080149 x 10 ⁻⁵	
CI	3.638269 x 10 ⁻⁴	3.574871 x 10 ⁻⁴	

From Reference No. 30

air on the products of propellant firing has been observed by other investigators³². Snelson, et al. reported that double base propellants fired in Argon atmospheres produced mole fractions of CO which were much closer to those predicted by thermodynamic modeling than when the same propellants were fired in ambient air.

Table 24

Influence of Exhaust Gas Mixing with Air on Carbon Monoxide/Carbon Dioxide Ratios

Composition D

		Fuel/Air =	: 5*
Pressure, atm	39.5	5.0	1.0
Temperature, °K	1837	1300	1000
CO/CO ₂	1.44	1.08	0.74
		Fuer/Air =	: 3*
Pressure, atm	39.5	5.0	1.0
Γemperature, [◆] Κ	1837	1300	1000
CO/CO ₂	1.16	0.88	0.61
		Fuel/Air =	: 1*
Pressure, atm	39.5	5.0	1.0
Temperature, *K	1837	1300	1000
CO/CO ₂	0.31	0.25	0.17

^{*} Considers exhaust gases from motor nozzle as "fuel."

RECOMMENDATIONS FOR FURTHER WORK

It would be interesting to compare these results with other computer models. Software is available with similar, but not identical methods of computation and data fitting³³.

It may be possible to extend the NASA Lewis model to account for nonideal gas equations of state for some of the major components, without involving major modifications to the program. However, any revision is not to be undertaken lightly; the program is some 5000 lines of Fortran and represents a very large investment of time and effort. The development of a new model would require a similar investment.

A thorough review of the thermal and transport property data base may seem to be desirable, in order to incorporate any new information available since the 1986 revision, and to have some additional assurance that the data have been entered correctly. However, there have only been 8 changes to the data base, and none have practical significance for this study³¹. And since transport properties are not a significant factor in this work, any changes should not have an effect on the conclusions.

It would be useful to model the chemical kinetics of these processes, using the software described in Reference 34. It should be noted, however, that a considerable amount of effort would be required to elucidate the reactions occurring in these events and to make estimates of the necessary rate constants. The Arrhenius constants and the activation energies for the hundreds of conversions processes are not available. In contrast, modeling the flow processes may be useful, since it could lead to a better understanding of the amount of air entrained with the exhaust during combustion.

It might be useful to do some experimental firings of the motors into inert atmospheres, such as argon, in order to test the air mixing hypothesis. However, such in and of itself would not aid in the refinement of the model.

Finally, alternatives to the "air entrainment" explanation as the source of disagreement between experiment and computation should be explored. For example, calculations described in this report were carried out for two possible cases: either the chemical reactions in the expanding flow from the combustion chamber maintain complete equilibrium from throat to the nozzle exit, or else the flow is completely frozen once it leaves the nozzle throat. But the intermediate case is also possible. That is, the flow may freeze somewhere between the throat and the exit. This could provide a possible explanation for the discrepancy between experiment and computation without requiring the assumption of entrained air. To implement such an approach, an adiabatic expansion calculation should be run. Initial estimates provided to the authors of this report suggest that this approach is feasible³¹. However, to take full advantage of such an approach, careful experimental determination of hydrogen and methane would have to be performed. Because of the complexities of such real time analyses, these measurements could not be performed.

REFERENCES

- 1. FM 6-20 (with C1), Fire Support in Combined Arms Operations, 30 Sep 1977.
- 2. FM 71-101, Infantry, Airborne, and Air Assault Division Operations, 26 Mar 1980.
- 3. AR 40-10, Health Hazard Assessment Program in Support of the Army Materiel Acquisition Decision Process, 15 Oct 1983.
- 4. AR 1000-1, Basic Policies for Systems Acquisition, 1 June 1983.
- 5. Characterization of Combustion Products from Military Propellants, IIT Research Institute, USASMRDC Contract DAMD17-80-C-0019.
- 6. Short-Term Intermittent Exposure to HCl (Draft Final Report), Enviro Control, Inc., USAMRDC Contract DAMD17-79-C-9125.
- 7. Hoke, S.H. and J.W. Carroll, Development and Evaluation of Atmospheric HCl Monitors, in Toxic Vapor Detection Technology (Propellants and Related Items) S&EPS Workshop, CPIA Publication 386, October 1983.
- 8. Letter, SGRD-UBG-M, 30 April 1984, subject: Medical Research Issues Associated with Stinger.
- 9. Letter, SGRD-UBG-M, 18 Oct 1984, subject: Development of a Coordinated Methodology Investigation/Medical Research Program for Evaluation of Gun and Rocket Combustion Products.
- 10. Letter, (2nd End), SGRD-UBG-M, 24 Feb 1984, subject: Stinger Exhaust Gas Measurement, TECOM Project No. 3-M1-000-MAN-031.
- 11. MFR, DASG-PSP, 28 Jan 1982, subject: RC1 Health Hazard Assessment, Multiple Launch Rocket System.
- 12. Minutes of Meeting, Standardization of Test and Evaluation Procedures for Chemical Hazards in New Material, 13-14 Octo 1982, DASG-PSP, dated 15 Oct 1982.
- 13. Letter, SGRD-PLC, 15 Jul 1981, subject: HELLFIRE Human Factors Engineering Analysis.
- 14. Letter, SGRD-OP, 4 April 1979, subject: US ROLAND, Health Hazard Assessment, ASARC III.
- 15. Lette, DRXHE-MI, 31 Oct 1980, subject: US ROLAND, Health Hazard Assessment, ASARC III,b.

- 16. Letter, SGRD-OP, 15 Feb 1979, subject: Health Hazard Assessment, US ROLAND, ARARC III.
- 17. Letter, DRSTE-CM-A, 15 Oct 1980, subject: Safety Release (Limited) for RAM Demonstration of US ROLAND at Ft. Lewis, WA.
- 18. Letter, STEWS-TE-MF, 2 Aug 1982, subject: Exhaust Gas Measurements on STINGER Firings.
- 19. Letter, STEWS-TE-MF, 21 June 1983, subject: STINGER Exhaust Gas Measurements Test Plan (TECOM Project 3-M-OCO-MAN-031, and endorsements (2) thereto.
- 20. Letter, STEWS-TE-RE, 14 Feb 1983, subject: HCl Gas From STINGER Firings.
- 21. Keith J. Laidler, Chemical Kinetics, McGraw-Hill Book Company, New York, 1965, (pp138)
- 22. R. A. Jenkins, C. V. Thompson, T. M. Gayle, C. Y. Ma, and B. A. Tomkins, Interim Report, "Characterization of Rocket Propellant Combustion Products Description of Sampling and Analysis Methods for Rocket Exhaust Characterization Studies," ORNL/TM-11643, June 7, 1990.
- 23. W. H. Griest, R. A. Jenkins, B. A. Tomkins, J. H. Moneyhun, R. H. Ilgner, T. M. Gayle, C. E. Higgins, and M. R. Guerin, Final Report, "Sampling and Analysis of Diese" Engine Exhaust and the Motor Pool Workplace Atmosphere," ORNL/TM-10689, March 1, 1988. DTIC No. AD-A198464
- 24. B. A. Tomkins, R. A. Jenkins, W. H. Griest, R. R. Reagan, and S. K. Holladay, "Liquid Chromatographic Determination of Benzo(a)pyrene in Total Particulate Matter of Cigarette Smoke," J. Assoc. Off. Anal. Chem. 68(5), 935-940 (1985).
- 25. F.J. Zeleznik and S. Gordon, Calculation of Complex Chemical Equilibria, Ind. Eng. Chem. 60, 27-57(1960).
- 26. F.J. Zeleznik and S. Gordon, A General IBM 704 or 7090 Computer Program for Computation of Chemical Equilibrium Compositions, Rocket Performance, and Chapman-Jouguet Detonations, NASA TN D-1454, 1962.
- 27. S. Gordon and B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, NASA SP-273, 1971; interim revision, 1976.
- 28. B.J. McBride, personal communication.

- 29. M.W. Zemansky, <u>Heat and Thermodynamics</u>, Fifth Edition, McGraw-Hill Book Company, New York, 1968. (pp. 279-281, 557-606).
- 30. D. Straub, Thermofluiddynamics of Optimized Rocket Propulsions, Extended Lewis Code Fundamentals, Birkhaeuser Verlag, Basel, 1989.
- 31. Eli Freedman, Personal communication to Steve Hoke, USABRDL, February 12, 1991
- 32. A. Snelson, P. Ase, W. Bock, and R. Butler; "Characterization of Combustion Products of Military Propellants, FINAL REPORT, Volume II," AD-A167417, March, 1983
- 33. R.J. Kee, personal communication.
- 34. R.J. Kee, J.A. Miller, and T.H. Jefferson, CHEMKIN: A General-Purpose, Problem-Independent, Transportable Fortran Chemical Kinetics Code Package, Sandia National Laboratories Report SAND 80-8003, March 1980; A.E. Lutz, R.J. Kee, and J.A. Miller, SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Sandia National Laboratories Report SAND 87-8248, February 1988.

Appendix A
Selected Rocket Propellant Formulations

Table A-1

COMPOSITION "D" FORMULATION

Abbreviation Constituent	Constituent	Formula	Wt %	AH, (kcal/mole)
NC	Nitro Cellulose (12.6% N) C _e H _{7.55} O _{2.6} N _{2.65} 49.0 ± 1.5	CeH755029 N245	49.0 ± 1.5	169.17
NG	Nitroglycerine	C ₃ H ₅ N ₃ O ₆	40.6	-88.60
DNPA	Di-n-propyt adipate	C ₂ H ₂ O ₄	3.0	
NDPA	2-Nitrodiphenyl amine	C ₁₂ H ₁₁ N ₂ O ₂	20 ± 0.05	-16.71
	LC-12-6*	See note	5.3	
Wax	Candella wax	C ₂ H ₄ O	0.1	

*LC-12-6 is a mixture, consisting of 11.4% Copper, 36% Lead, 40.1% β -resorcytic acid (C, He O₃) (AH, $^{\circ}$ = 190 kcal/mole), and 12.5% 2-hydroxyberzoic acid (C, He O₃ AH, $^{\circ}$ = -141 kcal/mole)

Heat of formation unavailable

Table A-2

COMPOSITION "H" FORMULATION

Abbreviation	Constituent	Formula	Wt %	ΔH,* (kcal/mole)
KCIO ₄	Potassium perchlorate	KCIO ₄	7.8-8.05	-103.43
NC	Nitrocellulose	C12H15N5O20	54.60	169.17
NG	Nitroglycerine	C ₃ H ₆ N ₃ O ₄	35.50	-88.6
EC	Ethyl Centralite	C ₁₇ H ₂₀ N ₂ O	0.9 - 0.8	-25.1
С	Carbon Black	С	1.20	Ref.

The entry "Ref." in the heat of formulation column means that this is a reference element in the NASA-Lewis program.

Table A-3

COMPOSMON "L" FORMULATION

Abbreviation	Constituent	Formula	Wt. %	ΔH ₄ • (kcal/mole)
AP	Ammonium Perchiorate	NH4 CIO4	73.93	-70,58
PVC	Polyvinyi Chloride	(C ₂ H ₃ Cl)	11.67	8.41
DEHA	Di (2-ethyl hexy!) adipate	C22 H42 O4	11.67	-308.0
CUCR	Copper chromite	Gu ₂ Gr ₂ O ₄	0.97	Ref.
A1	Aluminum Powder	Al	0.99	Ref.
С	Carbon Black	C	0.05	Ref.
BACD	Stabilizer (Barium/Cadmium)	Ba-Cd	0.47	Ref.
SDSS	Sodium dioctyl sulfo succinate	C ₂₀ H ₃₇ O, SNa	0.083	*
GMO	Glycerol monocleate	C21 H40 O4	0.083	*
PTD	Pentaerythrital dioleate	C41 H78 O5	0,084	*

^{*} Heat of formation unavailable

Table A-4
PROPELLANT 'Q' FORMULATION

	Constituent	Formula	Weight %	∆H*₄ (Koai/mole)
NG	Nitroglycerine	C ₃ H ₈ N ₃ O ₉	11.36	-88.60
BTTN	Butane triol trinitrate	C ₄ H ₇ N ₃ O ₉	11.36	-93.07
НМХ	Cyclotetramethylene tetranitramine	C4HBNBOB	66.00	17.93
PGA	Polyglycol adipate	С ₁₀ Н ₁₆ О _Б	4,63	-282.9
N-100	Tri-functional isocynate	C ₂ H ₃ NO	1,68	-23,55
MNA	N-methyl-p-nitroaniline	C7HeN2O3	0.75	*
4-NDPA	4-nitrodiphenylamine	O12H11N2O2	0,40	15.4
POP	Polycaprolautone polyci	C _e H _e O ₇	0,34	-655.1
NO	Nitrocellulose	C12H15N5O20	0.34	169.17
	Lead Citrate	Pb ₃ (C ₆ H ₅ O ₇) ₂ *3H ₂ O	1,50	*
ZrC	Zirconium Carbide	ZrO	1,00	-48.5
C	Carbon Black	С	0.40	Ref.
TPB	Triphenyl bismuth	BI(C ₆ H ₅) ₃	0.04	*

The entry "Ref." In the heat of formulation column means that this is a reference element in the NASA-Lewis program

^{*} Heats of formation unavailable

Appendix B

Trace Organic Vapor Phase Constituents Observed In Selected Rocket Exhaust Atmospheres

Table B-1

Concentration of Trace Organic Vapor Phase Considerants in ASCF Chamber

Compositions D and H

					Concentral	Concentrations, pg/m³				
		J	Composition H	.			Composition D	ilion D		
CONSTITUENTS	Mark 1	No. 1A	No. 2C	No. 2D	Blank 2	No. 1A	No. 2A	No. 28	No. 3B	Blank 3
Trichlorofluoromethane						17.7	11.2		16.1	
Methylene chlonde				8.95	11.9	9.29	6.39		211	
Trichloroethane	0.42	0.79		0.93		0.3	0.4			
Benzane	0.82	121	16.6	14.4	0.57	3.95	3.79	49.2	15.8	
Trichloroethylene		0.94		3.14						
Methylcrotonate			3.32	31.4	2.09	6.04	4.39	19.7	3.82	0.75
C[1]-berzene		7.16		17	1.57	1.86	2.44	6.66	294	1.02
C[3]-c; clopentane				0.85						
Chlerobenzene		29								
C[6]-cyclotrisiloxene	3.7	10.6	34.9	58.2	23.9	15.3	14	22.7	6.59	18.4
C[2]-benzene	6.7		3.85		1.27	1.25	0.48			
C[2]-benzene		4,15		722			1.6			
Phenyiacetylene		1.62	2.13	5%				3.03	1.71	
Styrene		2.9	3.49							

Table B-1 (Page 2) Compositions D and H

					Concentrations, µg/m³	ns, pg/m²				
			C	Composition H	Ŧ			O	Composition D	Q
CONSTITUENTS	Stank 1	No. 1A	No. 2C	No. 20	Blank 2	No. 1A	No. 2A	No. 2B	No. 33	Blank 3
C[2]-benzene						0.56	0.76			
Octane		1.28								
Nonene				233						
Nonane				1.15						
Terpinene	1.7			4.67	1.19	0.79				
Terpinene				2						
C[2]-benzene								10.6		
C[3]-benzene		1.17		424		0.6				
C[3]-benzene		1.36		6.37						
C[1]-sytrene				1.91		0.56				
Heptene							12		4.83	
Cyanotenzene								28	7.91	
Octene			7.11	·						
C[3]-benzene		1.09		1.66	6.0	0.51	0.56			
Decene		0.91	1.07	2.5		0.56	ļ			

Table B-1 (Page 3) Compositions D and H

						Concernations, paym				
)	Composition H				Composition D	ilijon D		
CONSTITUENTS	Blenk 1	No. 1A	No. 2C	No. 20	Block 2	No. 1A	No. 2A	No. 28	No. 3B	Blank 3
Decarie		96.0		1.49			0.48			129
Terpinene		1.02	1.84	2.59	1.12	96'0	8.0			
C[8]-cyclotetrasiloxene	622	6.03	30.2	20	0.97	4.65	5.19	18.2	6.15	7.48
Teripene		79'0		1.36				4.24		
C[3]-cyclopentane	2.67	6.03	3.26	4.67	25.4	9.75	5.99		99.0	
C[8]-cyclotetrasiloxane			2.31							
C[3]-benzene								1.89	98.0	
C[3]-benzene		0.72								
C[4]-benzene				0.89						
C[3]-cyclopentane				1.87						8.16
Terpinene										8.84
Undecane		1.06	1.6	1,31	99.0	9.0	0.56		0.53	1.56
C[1]-cyclohexanol	2.07	1.28	296	4.67	236	27:				1.02
C[4]-benzene		1.47								
C[3]-cyclopentane					1.19			8.32		0.75
C[10]-cyclopentas oxane		6.41	1.3	25.9	8.21	5.57	5.19	12.1	3.51	12.9

Table B-1 (Page 4) Compositions D and H

					Concentral	Concentrations, pg/m3				
		0	Composition H	1			Сопроейоп D	Micon D	``	
CONSTITUENTS	Blank 1	No. 1A	No. 2C	No. 2D	Blank 2	No. 1A	No. 24	No. 28	No. 3B	Plank 3
Naphthalene		2.79	45.4	11		1.49	12		7.91	8.84
C[10]-cyclopentasiloxane		2.04								
C[3]-cycloperitane			0.77	1.91						
Dodecane		0.26		1.23						
C[3]-cyclopentane	1.7		124	2.16	1.87		5.99	29.5		122
C[3]-cycloperitane	7.41	4.9	11.2	2.38						52.4
C[12]-cyclohexasiloxan				0.51	38.8		1.92			
Tridecare				1.4				35.6		
C[12]-cyclohexasiloxane	0.89	16.0	16.6	44.1	4.4	1.35			1.71	8.16
Tefradecane	1.25		95'0	1.66		0.38			0.57	0.75
C[5]-benzoquinone	1.41			1.83						1.91
C[9]-aminophenol	2.3		1.36	228				1.89		
Parthdecane										0.68
C[12]-cyclohexasiloxane	4.74	0.64	5.92	212	1.72		3.2			4.42
Diethyiphthalate	i				4.18					
C[14]-cycloheptasiloxane						4.04			0.29	

Table B-1 (Page 5) Compositions D and H

					Concentral	Concentrations, pg/m3				
		3	Composition H	4			Composition D	illion (J		
CONSTRUENTS	Blenk 1	No. 1A	No. 2C	No. 2D	2 Arad 8	No. 1A	No. 2A	No. 28	No. 38	Blank 3
Hexadecare		1.17		1.1					51.0	
Diethylphthalate										19.1
Diphenylamine								1.89		1.43
Hexadecene	2.74	0.83	3.97			1.07				
Actadecane	8.15		284	1.02						
Heptadecane	1.48		1.18	0.64		0.88				26:0
Nonadecane	2		2.37	1.1						2.65

Missing values denote compound at levels below method detection limits

Table B2

Concentration of Trace Organic Vapor Phase Constituents in ASCF Chamber

Composition L

	RETENTION	SYSTEM BLANK	BLANK 1	SAMPLET	SAMPLE2	SAMPLE3	BLANK2
	in and China	(undia		f mata	(mæs	Actual)	Argur)
argon	0.2	2.420	2330	4210	13.200	14.390	
cerbon dioxide	3.4	0.720	2.730		7.381	13.460	15.180
trichlorotrifluoroethene	10.1		0.270				
octamethyl-cyclotetrasiloxane	21.0	1.490	0.066	8.570		1.540	
mono- o: di-subs. benzene	21.8			0.530			
hydroxy-N-phenyl-acetamide or isomera	24.6			1.290			
trimethylsiane compd	24.7	0.580					
octamethyl-cyclotetrasilocane	25.8		0.106	5.820	0217	2.050	0.149
hexamethyl-cyclotrisiloxane	6.72			1.370			
octamethyl-cyclotetrasiloxane	28.5			0.312			
decamethyl-cyclopentasiloxane	29.6			1.926		0.569	
dodemethył-cyclohexasiłoxane	33.4			0.496			
hexamethyl-cyclotrisiloxane	34.0	0.930	,				
hexamethyl-cyclotrisiloxane	423	4.680					

Missing values denote compound at levels below method detection limits

Table B-3 Trace Organic Vapor Phase Constituents in ASCF Chamber

Cornposition Q

					Concentrat	ons, µg/m³			
Constituents	PET TIME, min	BLANK	BLANK-	THIAA •1	TBIAA- 2	TETAS- 2	TYTAB-	AATET 3	JETABL 9-
argon	0.2	2.420	1.698		0.750	0.071	1.787		2.581
carbon dioxide	3.4	0.720			1.654				
trichlorotrifluoroethane	10.1					0.018		1.217	
octamethyl-cyclotetrasiloxane	21.0	1.480							
hexamethyl-cyclotrialioxane	21.3				0.061	0.036	1,100		0.207
hexamethyl-cyclotrislioxane	22,7						0,043		
hexamethyl-cyclotrisilixane	23.6						0,044		
trimethylsilane compd	24.7	0.580							
octamethyl-syclotetrasiloxane	25.8		0,024			0.080	0.506		0.403
hydrocarbon	27.3					0,057			0.402
alkylalcohol	27,3			2.175					
hexamethyl-cyclotrisiloxane	27.9						0,080		
decamethyl- cyclopentasiloxane	20.8					0.012	0.074		0.277
naphthalene	31.5						0.072		
trimethyl-cyclobutanone	31.6		0.056	56.62 5		0.436		20.924	8.504
hexamethyl-cyclotrisiloxane	54 .0	0.930							
octamethyl-cyclotetrasiloxane	36.6						0.000	0.423	
phthalate	39.2			18.20 0			0.064	7.122	
hexamethyl-cyclotrisiloxane	42.3	4.880							
phthalate	43.8				0.061				

Appendix C

Output from Selected Runs of Computer Model NASA-Lewis CET-86

Table C-1

NASA - Lewis CET - 86

Output

Composition D

ri Dec. 4 18:32:42 EDT 1991

1111	1111	!	:::::
		0 0 0 1	
		6 6 8	
		• • •	
		4 1 4 4	
		♦ ♦ ♦	
		e 6 6 6	
		9 4 1	

	•		
		• • • • • • • • • • • • • • • • • • • •	

240 . 150 .

-169179.48 -88689.48 -246899.80 -14718.89 -196889.44 -141889.44
X. 898888 2. 488888 2. 468888 8. 648888

7.596 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
7.5584 27.6569 11.6669 6.6669 6.6669
4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 6500 7 6500 7 6500 7 6500 7 6500 7 6500
6 0000 3 0000 12 0000 12 0000 7 0000 1 0000

8/ 4	1.3-Butabieme	HENE	122	2-BETENE TRANS	***	2-Butene CIS	:	ISBNIEKE		3-Ruffne
1 4/85	(ACETIC ACIB)?	LCIB) 2	1 9/85	S-BUTTL BAD	-	H-BUTTL BRE	58/6 7	F-BETFL RAD	_	I SBBUTANT
1.4/85	S-BUTANE		3 3/61	CARBOR SUBMITAIS	332769	23	P18/85	CVCLOPENTABLENE		CYCLOPENTANE
P12/52	1-PENTERE	Į.	F18/83	M-PENTTL BAB	1 5/117	T-PERTYL RAS	P18/85	CH3C(CH3)2CH3	P.28/85	PENTANE
F18/85	I SBPEHT ARE	按	**	BETATRITUE	112/84	PHENTL RAS	L12/84	PHERBET PAD	L12/84	BENZE:E
L12/84	Putati			CVCLONESENE	F18/83	M-HERVE BAD	L 3/86	BEMZALCENTDE	P10/84	TOLUENE
L 4/83	CAE SAL		P11/52	I -MEPTEME	P18/83	M-REPTVE BAB	18/4 4	M-MEPTAKE	P12/52	1-BCTENE
P18/83	M-SCIVL RAD	2	P 4/85	BCTANE	F 4/85	ISB-SCTAME	F18/83	B-SONVL BAD	10 420	MAPTHLEWE
	AZBLEWE		P14/83	M-DECTL BAD	112/84	O-BIPMENTL RAD	112/84	BIPHENT.	16/88	3£1-4(G)
L 6/87	BISEBZYL		3 6/77	#J	312/11		99/# E	Cu2	3 3/77	*
113/69			312/78	HER RAD	312/78	83144	BUS 78	DRI	Rus 78	##0.2
845 78	2 0 10 10		3 9/78	HG2	3 3/17	#2	312/65	H2M2	3 3/79	#20
1 3/85	#262		3 5/77		3122/78		PES 78	-	Bu 5 78	2111
3 4/17	î		BES 78	22.26m	BES 78	1	20 7E	107	312/64	
1 3/11	#2		Bc 5 74	M292	AKS 78	MH 2168.2	22 23	M230	FUS 78	220
8 = S - 7 B	M.203		EX SAM		E 7	# 295	205 7			
1 1/17			1 4 7 3 3		1 1/17			:		
44.41										
				30.0		(10)				121282626
111/11				1974-175		100000		7710		
				(6.72.4881		77.07.0		77127	11/61	(4)078
	111111		79/4				77.77		11/716	
11/775			1,/210	(5)7991	7, // //	18384133				
					•					
	1.135	1. Independent								
2.2988	7. 25000000000000000000000000000000000000		3.13886	7.178840840840800	5.17868E					
2568	4.25年后有自己的公司的有关的		-8.8888.	. 7-8.8888888888888888888.						
	- 22*8.8586648858485648E+60.	106203706	######################################							
16237	3886.886									
2.34		*								
SE NO										
							1	ļ		
				7104 101 101	TATE TATE	· · · · · · · · · · · · · · · · · · ·		٠.		

	:4C-MBL)(BCC E)/4C		-8.26761298E+E3	2985-83			-8.26761298E+63	95+63		
1000				į						
	•			17	4111111					
د.			1.78727	1.7572/4031-01		0.00	8. ZBZZ /483E-41	31-41		
5			8.33316	. 35316637E-81			8.35516537E-81	TE-81		
1			8 . Z . 5 8 5	I I I I I I I I I I I I I I I I I I I			8-2129222-81	11-01		
*			11144 1	9948841E-\$2	# E0##66001 + 96	202+36	8-99428641E-82	:IE-02		
2			8 94248	**************************************		20E+02	9.9426B964E-04	14E-04		
•			. 71334	7345						
PGIBT ITE		92	•	# 02#	# 7		3			
1 19	19 2731 78	-29 403	•	. 812	-17.641	-24.934	•	.9.390	-15.842	
7	\$ 2463.72	-38.236	ĺ		-17.819	-25-158	÷	-8.128 -16.	-16.193	
ADD SW(L)	_									
2	3 2469.21	-38.231		-52,847	-17.827	-25.149	7	-8.599	-16.228	
	721478	T = 2869.71								
~	2067.87	-38.231		-37,848	-17.827	-25.263	7	-8.599	-16.219	•
PC/Pte 1	782846	7 - 246	19.87							
POINT ITE			_		17	~	CB(E)	£		
•	2264.33	-38.96E		-38.212	-17.98I	57E-3E-	Ť	-8.265 -13.	-13.621	
•	2256.32	-38.936	•		-17.987	-25.352	Ť		-15.595	
7 F	12 \$622	-36.934			-17.987	-25.352	5		-15.595	
•	1880.88	-32.584		-41 865	-16.288	-25.717	-1-	-7.552 -14.	-14.874	
•	1894. 64	344.5E-	•		-18.269	-25.783	, -		-14.139	
		-32. e.B	•		-15.269	-25.783	÷		-14.139	
K	1782 89	-33.817			-18.362	-25.825	-1.		-13.554	
•	1788 55	-32 961	•		-18.357	-19.010	÷		-13 586	
•	1427.60	-33 933	٠	-43.698	-18.561	-26.813	Ť		-12.584	

•	m	.626.	4 3 1626.83 -33.938		-43.383	-38.582	-26.814	-6.996	-12.578
*	•	1417.4	-35.53		6.693	-16.728	-16.322	-6.458	-18.842
90		ADD PB(L)							
•	M	1413.6	926 68- 0		. 684	-19.723	-16.324	-6.461	-16.985
μ.	•	1 4 1419.58	-35.474		-46 387	-18.715	-16.314	-6.477	-10 999
PE1#	T II	-	E		~	~	~	(1)83	ľ
•	•	1359.6	8 4 1359.67 -36.813		-64,817	-18,795	-26.424	-4.314	-18.862
#184	#12 I	-	72 I #11 III	_	C 0 2	828	2	CR(1)	E
•	~	1354.1	9 -36.86		-64.958	-47,695	-26.434	-6.299	-10.049
450	450 Cc(S)	_							
•	~	1358 8	-36.64		-64.876	-47,643	-26.043	-6.389	-18.858
H	13 348	(1)	PERGYE CULL)						
#194	1 112	-	PERMITTE TO CO		**		ĩ	(5)	ť
-	H	1354.8	4 -34 E4		-64 983	-47.686	-26.436	-6.383	-16.851
•	M	1355.8	48.48.		4.939	-47 683	-26.435	-6.383	-16.63

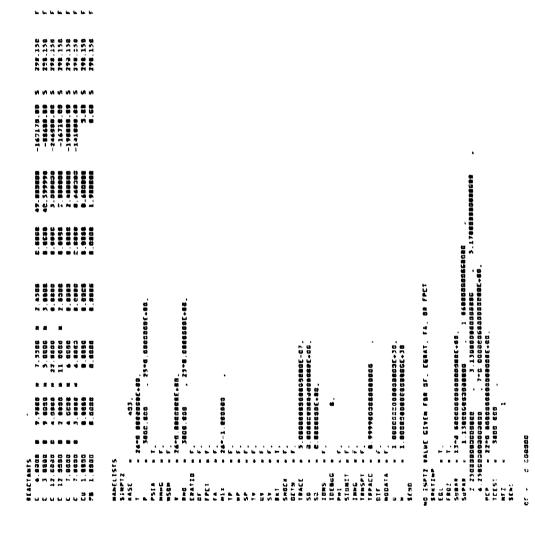
INCERETIENE SECRET PERFORMATE ASSURING CONTINUM CONPOSITION DIRENT EXFANSION

### 9 98880 ## 7 50280 ## 2 45900 ## 2	255							12	NT FRACTIEN (SEE MRTE)	ENERGY CAL/MOL	2	TENT
### 1990 Foreign Forei				•		45900		•	8.489217	-169178.290		298.15
### ### ### ### ### ### ### ### ### ##				^ ;;						-2448DC EDD		298.15
Color Colo					7 #			_	1.019966	-16718.800		298.15
Fig. 10 Fig.	ě			*				-	1.823962	-190606.850		298.15
### FORCERT TALL				ė	_					-141445-000		238.13
### THE PROOF OF CREEKE FAILE FROM THE PROOF OF CREEKE FAIL FROM THE PROOF OF CREEKE FAILE FROM THE PROOF OF CREEKE FAILED FROM THE PROOF OF CREEKE FAILE FROM THE PROOF OF CREEKE FAILED FROM THE PROOF OF CREE		000						•	. 818978			298.15
Triangle	•			EKT FUEL-	188.884		PALENCE RA	TIG- 1.54				
1, 1020 1, 252 2, 953 2, 123 16, 453 1, 249 2, 91 2, 953 2, 953 1, 954 2, 953		CRAMBER	TRREET	TING	EK17	ERIT	TEXE	EEIT	Erit			
13 2440 27.955 27.325 26.455 34.95		I ESDO		2.9558	7.6287	18.333	17.847	35.045	45.555			
1.8 2449.1 2754.4 1894.1 1898.0 1491.6 1 1491.6		178.11		57.553	22.323	16.463	9.9791	4.8514	3.7343			
6-2 12031-2 7, 20-6-5 3, 20-6-5 2, 20 10 120 120 120 120 120 120 120 120 1		2731.8	2469.2	2256.4	1894.1	1788.5	1626.	1419.6	1353.8			
1.25 - 1.		1.9346-2	1.2831-2	7.9469-3	6746-3	2.8781-3	1.9127-3	1.8658-3	6.6828-4			
25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		-931.88			-294.64			-1889.89	-1117.76			
### 25.55		7.4.7			11.14.1.			-1199.32	-1777-59			
25. 525 25. 566 25. 567 25. 56	:	10.44.91 8114.8			2 2785	2 2785		2.2785	7. 2783			
25.525 25.526 25.566 25.567 25.567 25.567 27								,				
0.6 -1.00102 -1.00103				25.566	25.585	25.586	25.587	28.52	25.613			
118 1 679 6 1.0131 1.01019 1.01020 1.01030 1.01333 1.01333 1.01333 1.0134 1.0134 1.01333 1.01333 1.0134 1.0134 1.01333 1.01333 1.0134 1.01333		-1 Bed 1-			-1.65818	-1.80055		-1.88217	-1.08137			
### ### ##############################		1 6158			1.0819	1.6869	1.8883	1.6333	1.8219			
1.2168 1.2257 1.2329 1.2339 1.2334 1.2233 1.2333 1.	3	8 4505	-	8.4347	B. alsa	8.4111	1007	B.4489	8.4375			
1.8 999.1 947.4 947.4 878.8 846.7 2.468 2.833 1.800 1.500 1.398 1.999 2.176 2.468 2.839 2.700 483 4.915 1.262 2.2500 3.1308 5.1398 4.79 2.81 2.82 4.75 1.27 1.282 1.27 1.37 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.2		1.2163	_	1.2277	1.232B	1.2334	1.2347	1.1233	1.2252			
1.880 1.398 1.999 2.276 2.468 2.875 2.458 2.875 4.429 2.276 3.1388 3.138	u	1641.		٠	878.2			751.1				
1.BEEG 1.1300 1.860 2.250 3.130 5.130 5.130 5.130 6.432 4752 4752 4752 4752 4752 4752 4752 475		B. 880		-	I. 999			2.875				
1.8800 1.3800 1.380 2.2556 3.1308 3.2386 3.	į	SE 3 L 3W										
### ### ### ### ### ### ### ### ### ##				1.1300	1.8620	2.2558	3.1368	5.1788	6.2560			
16.623 1.272 1.272 1.272 1.272 1.273	بر		4732	4752	4752		4752					
183 9 123 6 123 6 123 6 123 8 228.1 229.8 242.9 242.1 229.2 242.2			0 683	6.915	1 282	-	1.372	1.631				
3 802A-6 3 275a-6 1 2679-6 3 7396-7 5 7871-7 222	4		1.81	9 141	M 11		229.8	242				
3.8628-6 2.258-6 1.6699-6 6.7996-7 5.3881-7 5.6796-7 2.1358-7 1.7672 3.969-6 3.2789-6 1.9838-7 2.986-7 3.5851-7 2.1358-7 1.7672 3.969-6 3.2789-6 1.9838-7 2.9858-7 3.632-7 2.1358-7 1.7672 3.7961-1 3.7929-1 3.729-1 3.567-1 2.2958-7 3.478-7 3.2869-7 3.589-8 3.7961-1 3.7929-1 3.729-1 3.567-1 2.5938-1 3.2878-1 3.2878-1 3.2886-1 3.2887-1 3.2888-1 3.2887-1 3.28888-1 3.28888-1 3.2888-1 3.2888-1 3.2888-1 3.2888-1 3.2888-1 3.2888-1 3.2888-1	1			2 2	1		191.1	228.2				
3 8C28-6 2 2758-6 1 6699-6 6 7796-7 5 3881-7 5 6196-7 2 7356-7 1 7477 5 9694-6 3 2789-6 1 9638-6 7 6988-7 5 5565-7 5 6312-7 1 7469-7 1 7355 7 1525-6 7 68940-8 6 0756-6 1 6685-7 2 6565-7 5 6312-7 1 7469-7 1 7355 7 7561-1 5 7279-1 5 7059-1 5 5677-1 5 5565-7 6 759-7 1 8769-6 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Š											
1.9449-6 1.7189-6 1.9438-6 7.6984-7 5.5562-7 3.4312-7 1.7349-7 1.7335-7 1.7355-7 1.7349-6 7.735-7 1.7355-7 1.7359-7 1.7355-7 1.7359-7 1.7355-7 1.7355-7 1.7359-7 1.7355-7 1.7355-7 1.7359-7 1.7355-7 1.7355-7 1.7359-7 1.7355-7 1.7355-7 1.7359-7 1.7359-7 1.7355-7 1.7359-7 1.73				¥-	7.184.7	S TRAT - 7	2-7047	7 1354-7	7417			
11739-8 18890-8 80376-8 1.6885-7 2.2956-7 4.7589-7 1.8869-6 11.7039-8 18890-8 80376-8 1.5871-1 5.37989-1 5.4781-1 1.8869-6 11.7020-1 1.9792-1 2.4561-1 1.5759-1 1.6524-1 1.7554-2 1.8756-1 11.7020-1 1.0039-1 2.4561-1 1.5759-1 1.6524-1 1.7554-2 1.8756-1 11.7020-1 1.0039-1 2.4561-1 1.5759-1 1.6524-1 1.7554-2 1.8756-1 11.7020-1 1.0039-1 2.4571-1 2.4561-1 1.7554-2 1.8756-1 1.8756-1 11.7039-1 1.7570-1 1.7570-1 1.8761-1 1.7554-1 1.7554-1 1.7554-1 11.7039-1 1.7570-1 1.753-1 1.7548-1 1.7548-1 1.7568-1 1.8768-1 1.7570-1 1.7568-1 1.7568-1 1.7568-1 1.7570-1 1.7570-1 1.7570-1 1.7588-1 1.7570-1 1		3-4644			7.4984-7				1.3735-7			
7961-1 3 7929-1 3 7059-1 3 5871-1 3 3396-1 3 4878-1 3 2876-1 3 5607-1 1 4075-1 2 4561-1 3 5750-1 1 5759-1 1 575		7.1555-8		A 8376-8 1	6165-7				3.1498-6			
		3 7961-1	m	3. 7059-1 3	5.5871-1	3.5398-L		3.2876-1	3. ZZ41-1			
1248-3 I. 4943-3 6.1076-6 6.7881-5 2.868-2 9.8681-6 6.8337-7 1.894-6 I. 240-6 I. 775-7 1.808-8 9.846-12 I. 1391-11 7.1391-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71591-14 1. 71691-14 1. 71591-14		1.3682-1		1 1-1950 :	1.5759-E	1.6241-1		1.8756-1	1.5391-1			
1314 - 6 1 240 - 6 1 775 - 7 1005 - 7 2147-7 1 7 179-7 1 6 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2		2.3248-3	H		6. TBB1-5		•	4.8357-7	1.4381-7			
430 -5 2 141 -5 5,333 -6 1.885 -7 3.866 -8 4.880 -5 8.982-13 1 5647-2 7.3074-8 3.3756-8 3.882-13 1 5647-2 7.3074-8 3.3756-8 3.882-13 1 5647-2 7.3074-8 3.3756-7 5 10074-6 5.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-6 7.1075-7 7.10		5.836 -6		1.775 -7 1	1.808 -F	3.167-18	I.339-11	7.199-14	4			
9447-3 7,3074-4 3,3780-5 425-5 2,8597-5 6,845-6 1,1277-6 3,3027-6 3,1758-6 2,1758-6 2,1758-6 3,1758-6 2,1758-6 3,1758-6 3,1758-6 2,1758-6 3,1758-6		3.630 -9	1.141	5,333 -6 I	1.885 -7	3-166 -E	4-880 -9	8.982-11	1.973-11			
2, 1795-6, 2, 2018-6, 9, 618-7, 7, 628-6, 2, 2922-7, 2, 2255-7, 2, 3, 2755-6, 2, 2018-6, 9, 646-7, 9, 6462-8, 2, 2828-8, 3, 8755-9, 1, 8240-6, 5, 845-7, 2, 856-7, 2, 4487-7, 8, 2596-8, 3, 459-7, 1, 224-1, 2, 248-7, 1					S-2529 S		E. 4845-6	1.1237-6	3.2848-7			
3.939-6 1303-6 2.838-7 8.8687-8 2.8839-9 1333-9 1820-6 3.8837-9 1820-6 3.887-8 2.8358-7 1820-6 3.887-8 2.8358-7 1820-6 3.857-8 1820-8 3.8588-8 2 1.875-1 2.257-1 2.257-1 2.258-1 2.257-1 2.257-1 2.258-1 2.258-1 2.257-1 2.258-1 2.258-1 2.258-1 2.258-1 2.258-1 2.258-1 2.258-1 3.258		5.3027-6		2 3618-6 9	1.6146-7	7,6286-7	5.1932-7	3.2748-7	ŕ			
1.0240-6 5 8478-7 2 8366-7 1 4485-7 8 2596-8 2 5.658-8 2 5.658-8 2 5.658-8 2 5.658-8 2 5.658-8 2 5.658-8 2 5.658-8 2 5.658-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-1 1.5848-6 1.586-1 1.5848-6 1.586-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5848-6 1.5868-1 1.5848-6 1.5848-6 1.5868-1 1.5848-1 1.5848-6 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.5848-6 1.5868-1 1.58488-1 1.58488-1 1.58488-1 1.5		I 6486-5		1 5055-6 2	7-9818.7	9.66BZ-E	2.8838-8	3.8333-9	4			
1.8757-1 1.1243-1 1.2448-1 1.28931-1 1.9844-1 1.3445-1 1. 2 4375-1 2.3436-1 1.2734-1 2.22731-9 1.3456-1 1.9758-1 1. 3.526 - 7 1.213-7 1.2754-6 49.537-9 1.3456-9 1.446-18 6. 1.3456-5 1.1189-5 8.7447-6 8.4223-6 8.2889-6 8.45689-6 8		1 9396-6	=	5.8474-7.2	Z. B366-7	1.4487-7	8.2396-8	3.4546-1				
2 4375-1 2 3936-1 2 2734-1 2 2275-1 2 1357-1 1,9768-1 1 3 266 -7 1 273 -7 1,266 -9 5,637 -9 1,366 -9 1,446-28 6 1 1,876-2 1,1189-3 97,847-6 8,4229-6 8,2889-6 8,5868-6 8		1-6620 1	-	1 1-5021 1	1.2002.1	I-1842.1	1.3844-1	1.5445-1	I-8889-1			
3.506 -7 1 213 -7 1,206 -8 0,637 -9 1,366 -9 1,466 -9 1,446-18 6 1,3476-5 1,1189-9 1,746-7-6 1,423-6 1		2 4734-1	~	2 3936-1 2	1.2754-1	2.2273-1	2.1367-1	1.9768-1	1.9126-1			
1.3476-5 1.1189-5 8.7647-6 B.4223-6 8.2888-6 B.6868-6 8		1 075 -6	٣		1. Zie - 8	5.637 -9	1.366 -9	1.446-18	6.268-11			
		1575.	٠									

1-1	2-14	1-61	5-14	56-3	1-91	15-7	61-3	9 00	69-3
1 1.20		1.07	1 1.E2	1.33	1.17	7 2.89	3 2.40	9.0	7.00
1.2687-	2.015-13	3.1721-I	1 271-1	2.1436-	-2921.79	-9654-5	2020 0	2.4859-	1.9225-
1.2687-1	2.736-11	5.6352-7	1 919-11	2.3325-3	3.0464-6	4.7905-7		2.4604-3	8.0000.8
2687-1	437-10	. 2454-6	149-10	3276-3	3-1961	. 3149-T	9 0000	. 3735-3	. 000C 0
1-9291	.835 -9 5	3414-6	. 264 -9 4	. 3222-3 2	. 349E-5	7-619-	. 8036 8 1	. 3386-3 2	. 00000 .
7684-1 7	255 -7 2	1133-4 8	518 -T 2	7825-5 2	2128-5 1	8653-7 7	3000	7847-5 2	0 0000
1 1-6692	404 -6 Z	38-9-6 1	2 9- 665	2316-3 2	4672-5 5	1017-6 9	8068 0 0	4644-4 3	. 85.00 0 0
2 1-5902	1 9- 249	0157-3 5	1 9- 40*	,以上的时候,"这一位的女女。"是一句,也是我说的"是一句,我们的人的"是一句,我们的人的",我们的女女,是一句,我们的人,这一句的事情,	6833-4 9	3431-6 1	0 0000		2000 0 0
-	٠	-	٠	~	•	-	•	13	•
î	t	: :	23	un L	E10-6	P4 	(\$).	C-11-3	7.0

ADDITIONAL PRODUCTS WATCH MERE CONSIDERED BUT WASSE MELE FRACTIONS WERE LESS THAM 8.500000-06 FOR ALL ASSIGNED CONDITIONS

	*.0	C=:	C+3	· JM314ML3MAXBUGIA	30120144139	HETHANDL
	SCR BAD	CHN BAC	£3	C2M MFD	392-4233	343133
840	METHT CTABIDE	CHICO RIO	CHZCHG RAD	ETAYLENE	LCETALDENYDE	ACETIC ACID
MIC ACID 12	STRTE BAC	ETHTL EXIDE BAD	ETHANE	A Z G WE T M A M E	THANGL	MINETALL ETHER
244	CYANGOER	CCE BAD	C3	C3H3 RAD	SESTER	PROPER
¥	C3H5 RAD	CTCLEPROPANE	PRSPYLEKE	PROPERE DAIDE	I-PROPTE BAD	N. PROPTL RAD
1145	TORFADEA-T	CALBON SUBSTIDE	2	BUTABITPE	101 SH-1 [N-34H	CTCLOBUTABLESE
344	1.3-BLTADIERE	2-BUTEME TRAKS	2-BUTENE CIS	ISGBUTENE	I-BUTENE	CACEFIC ACIDIZ
251 840	#-BUTVL BAD	T-BUTTE MAD	I SUBUTANC	M-WUTANE	CANADR SUBNITEC	E.\$
CretoPERTABLENE	CTCLOPERTARE	1.PENTCHE	B-PENTTL BAD	Cre laing-:	CH3C(CH3)2CH3	PENTARE
Cutont.	ME LATRETHE	PRENT BAD	PRESCRY RAD	BENZEME	FRENDL	CVCLCHERENE
ET. BAD	JG##3GT#7H3#	TOLUCE	FRESSL	1-4EP16HE	HEPTYL BAD	N-HEPTANE
; E w [B-GCTTL RAD	GCTAME	150-CCTANE	H-HONYL RAD	BAPTHLEME	430154
CTL CAD	G-RIPHENT BAG	BIPFERFL	3£1-A(C)	BIBENZVL	040	7000
	*0.5	# : # Z	### ### ### ### ######################		100	r
	MD 2	103	H2#2	N=2 NG2	4244	H29
	m264	#205	2	1171	13	C(SE)
EME(1.)	131711	GCTAME (L)	3ET-A(L)	CUCB3(5)	:u6(5)	CUBZH2(S)
(5)	Cuza(L)	#20:53	#20(L)	78(5)	PBG (#0)	(BA)084
-	PSC2(5)	PB30+(S)				


NOTE VEHENT FRACTION OF FUEL IN TOTAL FUELS AND OF BILDARY IN 191AL BEIDARIS.

THEORITICAL RECKET PERFORMANCE ASSUNING FROZEN COMPOSITION BURING EXPANSION

20000000000000000000000000000000000000	C C C C C C C C C C	E E E E E E E E E E E E E E E E E E E	7. 40 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.469351	1	-1971/2. 860	A V	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000000 K 3.8			7.			v	298.13
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Company Comp	0000		•		- 48400 .000	٠,	298.15
	2000	UEE 180.0000 111 1	P		20 0		200.000942-	Λ.	23.13
	### ### ### ### ### ### ### ### ### ##	UEC. 100.000 UEC. 100.0000 UEC. 100.000 UEC. 100.000 U					De D. 241797-	, ,	
	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	UEL. 186.8800 0117 7.7335 0119 7.7335 011					200 000.41	1 0	1.1.1
	PERCENT N PERCENT N POLA 2:9 2-914 2	UEL. ISB. 8800 11 E11 915 7.7535 916 21.997 13.9 180.9 13.9 180.9 13.9 180.9 13.9 180.9 13.9 180.9 13.9 180.9 13.8 1							
•		UEL- 188.8888 11 7.7335 915 7.7335 916 7.7335 917 7.7335 918				0.818973	F. 080	N	231.15
_	### #### #############################	117 EXIT 1735	EBSIAGE	EBSIVALENCE RATIO: 1.5413	1.5413	-1144	PHI= 0.8850		
		815 7.7335 816 7.7335 817 7.7335 818 7.7335 918 7.	1183	Call	Exit	ERTY			
	64 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	21.997 31.997	n			47.638			
	200 200 200 200 200 200 200 200 200 200	91.9 186.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				5.5710			
	64.42 1.476 44.42 1.476 44.42 1.476	1.5 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1746.9	1373.3		1279.4			
29 4 62 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	'	2.2785 2.	1.8876-3 3.5	7259-3 5.		H. 6712-A			
447-1 447-1	1	-1037.28 -5097.55 2.275 25.493 8.3974 1.244 866.3		-1001-42 -1		-1112.01			
		20044.20 20.3924 20.3924 20.3924 20.60.3 20.60.3		46'96TE- 40'8ZTE-		-1717.34			
25 443 6 4189 1.7284			2.2785			2.2785			
29 443 4189 11. 2786									
9824.1					25.493 2	25.493			
1.7286						. 3711			
						1.2659			
1046 3			B41.5	101	746.5	126.8			
· · · · · · · · · · · · · · · · · · ·	1.660 1.		2.186	2.672	2.082	3.134			
	"	-				6.2500			
CSTAR, FF/SEC	•	4732 4732	3752	4732	4752	4732			
		C 214 B 101	10.17	328	740 1	244.1			
15P. 18-SEC/18			187.6	101	219.4	224.8			
POLE FRACTIONS									
FORMALDENTOE G GGSC3	FORMIC ACID		E. 85661	נפ	-	137961	C02		0.13662
0 66252	נמס	1 · ·	5. #GC#1	Cu2		0.0880.9	=		0.00156
6.63001	MCG BAD		70000	0 0 0	-		Z H		0 10245
0.24734	2 16 16	. i			- '	20007	2		60000 D
11245	, ;	i 6	12000		. •	70788-8	7		0 . 000e1
SEDITIONAL PRODUCTS WHICH WERE		CONSIDER O BUT BRESE BOLE FRACTIONS WERE LESS THAN	BLE FRACTIBI	MS VERE L	ESS THAN	. 50000	E-06 FOM A	LL ASSI	8-5000E-06 for ALL ASSIGNED CONCITIONS
ā	Z#2	Ņ	ŝ		NTDRBKVNETATLENE	THYLENE	HETHYLOXIDE	IDE	CHA
	UR.	MCM BAD	CHR RAD		C2				ACETYLENE
	311	METRYL CVANIDE	CH3CO BAD	0	CHZCHG BAD	9	ETHYLENE		ACE TALDENTDE
ACETIC ACED (FBBMIC ACID)2		ETHTL BAD	ETHTL BIIDE BAD	TOE BAD	ETHANE		AZOMETHABE	뀰	ETHANDL
131		CTANGGEN	CCO BAD		5		C3M3 RAD		
ALLENE	8	C3MS RAD	CYCLOPSOPANE	PAME	PROPTLENE		PASPTLENE BATTE	E DXIPE	
	-1	I-FREFAREL	CANGON SUBDIIDE	THE 1 1 DE	3		BUILDIVE	_	BUTAN-1EN-3VR
		1.3-Butablene	2-RUTERE TRANS	18435	2-BUTEME CIS	. C15	1508016#6	ىپ	1-BUTENE
(ACETIC ACID)Z S-BUTYL #40		1-8014F 840	-BUTTL RAD	242	T POST THE	1	N-MCTON-K		CINTERES SERVICES
CYCLOFENTADIENE		CYCLOPENTAME	1-PENTENE	ų	M-PERTTL MAD	940	I-PERTTE RAD	EAD	CH3C(CH3)ZCH3

B-MEPTTL RAD BAPTMLENE BMP BMC BZNA GZNA GZNA CU(L) RZNA GZNA CU(L)	
1-MEPFENE BABBAYL RAD BABERZ TL BAZAND Z BAYAND	
CMCSD. 158-0CTAME 158-	
10110 ()) 10110 () 1011	
BENTALDERVILE BENTALDERVILE BAD G-BITFERVE RAD HGT BAGG G-BITFERVE BAGG BAGG BAGG BENTALDERVILE BAGG BENTALDERVILE BAGG BENTALDERVILE BAGG BENTALDERVILE BAGG BAGG BAGG BAGG BAGG BAGG BAGG BAG	
## ## ## ## ## ## ## ## ## ## ## ## ##	
PACE DE CONTROL DE CON	

NOTE, WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

### Commence of the commence o	02/10 03051508-0108-0108-0108-0108-0108-0108-010		EFFECTIVE FREE PPP(Z)	EFFECTIVE BILDANT RPPCIJ	IIDANI	BILLY BE BENEFIT OF THE BENEFIT OF T	
Colorado	, ,,,						
The column The	!		G 20227483E-61	B. 0568886	E+86	0.1027483E-01	
The column The			0.27585951E-81		E+88	8.35316637E-81 R 27585941F.R1	
The column col			B. 97408441E-62	0.4004000	E-86	B. 99488661E-82	
Table Tabl			8.94268964E-84 0.91552358E-84	2,0000000 30000000	E+88 E+88	8.94268964E-84 8.93532358E-84	
17.5 17.5	-	8	M 20	2.3	:	ŧ	1
Table 19 19 19 19 19 19 19 1		-29.318	-35.626	-17 468	-74 773	-4 331	77.
Table 10.807	144 119	-38 854	-36.861	-17.638	-24.976	-7.951	-16.613
1993 T. 2013 B6	3 2471.86	-36.837	98 H. AK -	-17 647	-24 985		
1.0 1.0	1.781930	1 = 2071					
1	3 2478.79	-30.648		-17.646	-24.986	144 41	748 91-
1.524 2.64 2.524		T - 2478					
2226.17 -17.88		93	H 28	~		7 7 7 7 7	:
1226-13 13.00 <		-30.725	-38.B2B	-17.883	-25.164	18.266	-15 647
1887, 65 - 12, 2350, 800, 18, 802, 171 - 12, 25 - 12, 2730, 800, 18, 802, 1730, 25 - 12, 2730, 800, 18, 802, 5287, 538		-38.754	-38.678	-17.886	-23.171	-8.252	-15.415
1886 32 32 32 33 40 88 48 48 48 48 48 48	2256.88	-38.754	- MB. B78	-)7.886	-25.171	-8.252	-15.416
1893.65 - 32.239	1880.55	-32.323	-40.885	-18.097	-25.534	-7.351	-13.889
1787.29	1893.65	-32.259	-40.768	-18.887	-25.528	-7.578	-13.954
1787.23 178.23 179.23	1873.69	-32.239	-40 . 76B	-10.007	-25.528	-7.578	-13.955
1.78 1.75	1782.29	-32.832	-41.616	##1'B1-	-25.682	-7.345	-13.368
1467.43 -13.725 -43.518 -12.318 -25.828 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.928 -45.228 -45.228 -45.228 -45.928 -45.228 -45.		-32 606	-41.75	-18,175	-25.636	-7.358	-13.401
1411.95		-33.732	-43.518	-18.318	-25.838	-6.998	-12.399
1411.95 -35.353		-33.756	-43.529	-16.319	-25. 832	-4.995	-22.393
1414.43 - 35 140	6 1411.93	-35.353	-46.524	-10.538	-16.148	-6.457	-18.655
14 C 15 C 16 C 16 C 17 C	•		1	;			
1340, kb -45, 285		-35.340	-46.497	-18.500	-16.145	777 -9-	-18.987
1 1 1 1 1 1 1 1 1 1	1420.85	- 15 ZB2	-46.588	-10.535	-26.135	-6.481	-11.661
1356 71 -35.824	-	22	C02	113	10.7	CM(F)	
1354-84 -35.279		-35.824	-64.611	-18.614	-26.242	-6.317	-10.64
1336.84 -75.279	-	5	C02	H 20	28	(1)85	
1318.00 -39 842	1354.84	-35.979	-64.762	-47.504	-26.253	-4.388	-10.451
C	1356.00	-35 862	-64.623	-47 461	-74 748	*01. 4-	
T C8 C02 M2 CB(5) 1355 S2 V5.875 -46.782 -47.495 -76.256 -45.266 -47.495 -76.256 -45.365 -47.495 -47.495 -47.495 -47.495				•			
-35.875 -64.747 -47.495 -26.255 -6.364 -35.874 -38.782 -47.491 -26.256 -6.365	-		C02	H 20	2	CB(S)	(T)
-35 674 -58.762 -47.491 -26.254 -6.305		-35.875	-68,787	-47.495	-26. 255	-6.384	-10.652
		-35 674	-58.762	-47.491	-26.254	101 9-	18 841

THEORETICAL ROCKET PERFORMANCE ASSUNING EQUILIBRIUM COMPOSITION DEDING EXPANSION

FUEL C 6 800000 FUEL C 12 804000 FUEL C 12 804000 FUEL C 17 804000 FUEL C 7 804000 FUEL C 7 804000							: <u>5</u>	NT FRACTION (SEE MOTE)	ENERGY CAL/NOL	3	
			*	55603 m	2.458BF		-	4.489217	-161178.880		
	B (_	*		- '	8.485351		٠.	
, , , , , , , , , , , , , , , , , , ,	•	00000	77					766678-3	-240040.800		
300	٠,		•						111111111111111111111111111111111111111		
	•		• •					71677	-141880 808		
	١		ì	}			_	2000	8 880		
							_	918970	0 800		
- J/B	0.0060		CENT FUE	PERCENT FUEL* 105.8689		EBRIVALENCE RATION 1.5413	ATIB: 1.5	413 PHI-	[* 8.1808		
CHANZER	35.	THEBAT	ERIT	EXIT	T Extr						
1	3888 T	1.7838	2 9579	9 7.6264	19.361	1 17 859	35.856	45.558			
P, ATH 20	204.14	114.49									
		2478.8									
u		1.4423-2	•	•	n						
	-333.60	-648.87			727.77	-894.Z> -933.J/ -1888.18					
					22 -18/8-82	10.36.61					
CAL/E -004		-6123.77	14.46.86.	10.7976- 1			79.6678-	27.07.			
#21, WT 25	25.494	21 542	25.569	3 25.585	45 25.586	6 25.587	25.661				
1.671		-1.05.57	7	7	7	7	7	-1.00116			
		1.8253									
) (E)	8.4482	4528			-			Ī			
THA (5)	2.7176	1.2161	-	17 17 2321		-	-				
SEC	1041.5	919.1									
		1.666			G0 2-177			3.613			
SETIBETE SINTERFICE	v										
46/41		1 680	1.1389	1.8600	2.2588	8 3.1300	5.1786	6.2500			
CSTAR FT/SEC		4753									
		(19 3	8.91	-				1.528			
IVAC 18-SEC/14		1113.8	191								
125, 18-5EC/18		100.4	133.	2 177.6		282.7					
MOLE FRACTIONS											
				1-4116 8 9-114.	1-0424-1	7 4 7410-7	7 5605-7	1.4011			
		-		6 8.9828-7							
				~				4.4849-6			
84 K				3,7561-1 3,5869-1		1 3.4475-1	3.2888-1	3.2248-1			
-				1 1.5761-1							
		1.2588-3				3-8658-F					
•				1,487 - 2 1,497 -9	-9 2.519-18	-					
Cu2 4.298	ş	1.816 -5		6 1.563 -7	-7 4.288 -8			=			
	~	4.7233-4	3.0083-4	4 5.1223-5							
•	3624-6	3.6023-6	2.4714-	2.4714-6 1.1532-6	•	•		M			
0**	1.1526-5	4.7647-6		6 2.2G41-7	-			H	•		
MMCE 2.32		1.2291-6	7.8136-7	7 2.4417-7	-7 1.7369-7	7 9.9824-8					
F. 02		1-9519 1		14			=				
M2G Z 47	4747-1	1-585+ 2		M				=			
-	140 -6	3 864 -7		7 1,381 -8							
DT 2 E HR		1.6133-5		5 1.0519-5		5 9.8554-6	L. 8279-5	1.8565-5			

Z =	2 2662-1 1,2679-1 1,2684-1 1,2684-1 1,2687-1 1,2687-1 1,2687-1 1,2687-1 1,2687-1 1,2687-1
_	我们是这一一年,1、1267 一年,1、1891年,17、12、12年年,18、12年12年12年,18、12年12年12年,18、12年12年12年
:	9、10.10.10.10.10.10.10.10.10.10.10.10.10.1
8 Z	多用一带的的"的"的用一条的器,则"我们一的器的"用,指出一种的专"的"条件,这是是""数",不是"这"的"这",这是"不是我",这一个人的是,这
	2、16年17年,18、18月18日,19、18月18年,18、18、18月18年,18、18月18年,18、18月18日,18、18日18年,18、18月18年18
128.1	1. 医爱女子 一手,也,你们们是一个一个,我们是有一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
. . .	17、 18 11 11 11 11 11 11 11 11 11 11 11 11
C4(S)	4. 化二氯化 4. 化物物 4. 化 10 10 10 10 10 10 10 10 10 10 10 10 10
(1)83	是我的情况,我们一个不知识的,我们也不是有""的"这一也不是的"的"这一也有有的"的"这一也有是的",这一只有我们,这一种,我们们是一种
	医二氯甲基甲二甲二甲二甲甲二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲

ADDITIONAL PRODUCTS UNITE WERE CRASIDERED BUT 1485E MALÉ FRACTIONS WERE LESS TANN 6.388806-86 FOR ALL ASSIGNED CONDITIONS

	ı	E#2	CH3	HABBRANETHY CHE	METHTL BXIDE	HE THATOL
	BCR BAG	CHN RAD	CZ	CZH RAĐ	ACETYLENE	1 CTENE
	BETHYL CYANIDE	CH3CB RAD	CHICHG BAB	ETHVLEME	ACE TAL DEMY DE	ACEFIC ACIS
	ETHTL RAD	ETHTL BRIDE BAD	ETHANE	AZGNETRAME	ETSAMBL	DIMETHYL ETHER
HC BAG	CVANGGEN	CC6 RAS	2	CS43 BAS	CTCLBP28PENE	JRAGORA
	Cans man	CVCLOPROPANE	PREPTLENE	PREPALENE BXIDS	I-PREPTL RAD	M-PRGPTL RAD
	A-PROPAREL	CAMBON SUBBILDE	2	BUTADIUME	BUTAM-154-3TH	CYCLOBBTADIEME
	1.3-SUTABLENE	2-BUTENE TRANS	2-SBITHE CIS	I SOBET ENE	1-BUTEME	(ACETIC ACID)?
	M-BUTTL BAD	I-BEITE BAD	ISBBUTANE	E-SUTANE	CAPBON SUBMITRIB	53
	CVCLSPENTARE	I-PENTENE	H-PERTYL SAB	I-PENTUL BAD	CRNC1ERN DECKY	PEMTANE
	HERATRIFUE	PHENT, 4AD	GES TABELL	3432438	PHENGL	CYCLONEXERE
	BENIELDENTOE	TOLDERE	CAESOL	1-SEPTEKE	M-MEPTYL BAS	M-MEPTANE
	M-SCITL BAD	BCTANE	ISE-SCIANE	N-WORVE RAS	SAPTHLEME	AZULENE
	B-BIPMENT, RAD	BIPREMTL	JCT-A(6)	BIBENZTL	210	NEG.7
	101	#2#2	F282			1
	202	803	ZRZH	ne.2mB.	M2M4	#2#
	H784	= 285		232		(124)
	TOLUENE (L)	BCTABE(L)	3ET-A(L)	CHC63(S)	Cue(S)	C002H2(S)
	(1)8293	#28(S)	WZB(T)	PB(5)	700(40)	PROCTET
	PRE2(5)	PB384(S)				

MOTE, WELGNY FRACTION OF FUEL IN TOTAL FUELS AND OF BAIDANT IN TRIAL GAMMANTS

THEBRITICAL PRIKET PERFRONANCE ASSEMING FRRIEM CAMPOSITION DURING EXPANSION

Column C												
Colored Colo									FRACTION	ENENCY	21412	1689
### Committee Co	•	TOWN LEADER.			ı			. (SE		TBM/1W2		9 230
Color Colo	، د	•	7. 98588	1.55888		3000				129 B T T 691 -		278.45
Color Colo												67.8.13
Colored Colo		•										23.8 13
Colored Colo		•		_	z					-14718.800		294.15
County C	٠	•	_					•		122 - 22264T-		272.15
Colored Colo	L)		7. 88630	* 4.40600						-141605.005		298.13
CAMPER TABBLE CELT FOLIA CELT CE	3 2								.618970	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		298,15 298,15
				ENT FUEL=	106.000	CONTAI	ALEKCE RA	FIB= 1.54		- 9.88E		
1 0 0 0 0 0 0 0 0 0			TABBAT	1.13	FX 7 7	1111	6117	CELL	FILL			
13.310 1.300 1.3	£/5	1.6600	•	2.9813	7.7330	28.512	17.448	34.334	47.631			
13312-2 1.4445-2 2.5546-2 4.4322-3 1.4356-4 1.43102-3 1.43641-3 1.4441-3	A1m	204 14		68.471	28.398	19.419	11. 785	5.5164	4.2858			
1,2310 1,244 2,445 2,4	. BES R	2733.1			1858.6	1741.9	1374.3	1354.7	1200.3			
-733.58 - 674.58 - 775.25 - 77	7 C/CC	2.3287-2		•	. 4322-3	N-8638-N	2.3182-3	1.2086-5	1.0481-3			
1,254 2,344 2,345 2,34	. cst/6	-351.88	-649.46				-1461.59	-1085.24	-1113-04			
1.7346 2.544 2.5		78.997					47.22.11					
1.2786 25.496 2	S. CAL/(G)(K)	2.2543	2.2567	7 2563			2. 2543	2.2563	2.2543			
C. 470		;			;	•	;	;	;			
1.2356 1.231 1.232 1.240 1.231 1.232 1.240 1.231 1.2	10 Mar.	23.49	Z 2 . 4 Z	72.430					73.47			
Control Cont	TARE (C.)	7.417							177			
######################################		77.	1.4.24.1		***	1 1 1 1		100				
1.0000 1.1500 1.8648 2.2508 9.1588 9.1708 6.2588 4753			200		. 887	7 186	7 677					
	EPFBRNANCE PAR.	THE TEP 5										
0.0000	18/41		1.6060	1.1368	1.8688	2.2588	3.1388	5.1760	6.2588			
0.680 0.920 1.285 1.374 1.529	STAB, FI/SEC		4733	4733	4733	4733	4733	4153	4733			
			0.48	3.920	1.285	2.275	1.374	1.492	1.529			
0.9400 FORMIC ACID 0.98001 C2 0.77944 C02 0.9400 FORMIC ACID 0.98001 C22 0.77944 C02 0.9400 FORMIC ACID 0.98001 E42 E48 E48 E48 0.9400 FORMIC ACID 0.98001 E42 E48 E48 E48 0.9400 FORMIC ACID 0.98001 E42 E48 E48 0.9400 FORMIC ACID E48 E48 E48 E48 0.9400 FORMIC ACID E48 E48 E48 E48 0.9400 FORMIC ACID E44 E44 E44 0.9400 FORMIC ACID E44 E44 0.9400 FORMIC ACID E44 E44 0.9400 E44 E44 E44 0.9400 FORMIC ACID E44 E44 0.9400 E44 E44 E44 0.9400 E44 E44 E44 E44 0.9400	11/335-E1 2Y		187.3	191.1	212.7	219.1	278.6	746.4	244.2			
0.93600 FORMIC ACID 0.68601 C22 0.37944 C02 0.00311 CU0 0.68001 Cu2 0.88004 N 0.00312 CU0 0.68001 Cu2 0.88004 N 0.3447 Mrd Mrd Mrd C.88001 Mrd Cu2 0.88004 N 0.3447 Mrd Mrd C.88001 Mrd Cu2 0.88004 Mrd 0.3447 Mrd Cu2 0.88001 Mrd Cu2 0.88001 Mrd 0.3447 Mrd Cu2 Mrd Cu2 Cu2 0.88001 Mrd 0.3447 Mrd Cu2 Mrd Cu2 Cu2 Cu2 Cu2 0.3447 Mrd Cu2 Mrd Cu2 Cu2 Cu2 Cu2 0.3447 Mrd Cu2 Cu2 Cu2 Cu2 Cu2 0.3447 Mrd Cu2 Cu2 Cu2 Cu2 Cu2 0.3447 Mrd Cu2 Cu2 Cu2 Cu2 Cu2 Cu2 0.3447 Mrd Cu2 Cu2 Cu2 Cu2 Cu2 Cu2 0.3447 Mrd Cu2 Cu2 Cu2 Cu2 Cu2 Cu2 0.3447 Mrd Cu2 Cu2 Cu2 Cu2 Cu2 Cu2 Cu2 0.3447 Mrd Cu2 Cu2 Cu2 Cu2 Cu2 Cu2 Cu2 Cu2 0.3447 Mrd Cu2	15P. 18-5EC/18		: 81.2	135.3	177.3	187.6	282.2	119.4	224.9			
CONTRICTOR CON	ILE FRACTIONS											
C	COBMALDENTOE	0.9460	ē	WHIC ACID	1	1681	8		1.37966			6,13483
C C C C C C C C C C	2	8.00231	50		9 . 8	1001	CBZ		1.0000			8.851ea
	* 1	10200.0	Ĭ,	O MAD	-	1001			8 . 88680			6.10294
1	120	8.34767		~	E. 0	900	S II		1.0002			6.00008
	(* 6					1981	: 2		7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			6. 80001
CH CHZ	DDITIGHAL PRODE	UCTS WHICH	SHDD JHJM	IDERED SUT	M 35JMM	NE FRACT	JEJN SKOI	LESS THA	. Sess	7 484 98-30	11. 25571	GMED COMDITIONS
CAMPAND CHARAND CHARAND CATA CAND AND CONTRACT CONTRACT CAND AND CHARAND CATA CAND CHARAND CATA CAND CHARAND CHARAND CATA CAND CHARAND CHARAND CATA CAND CHARAND CATA CAND CAND CATA CAND CATA CAND CAND CAND CAND CAND CAND CAND CAN	u	å		CH2		CM3		HADER	THE FUTLER		IDE	740
C205	ME THANGL	ā		MEN BAD		CHE	_	2		£2# #AB		ACETTLEME
FORMIC ACID)2	THE SEME	C2#3 1	04	METHT	CTABIDE					ETHTLEM		ACETALDENTO!
CHE PAD	ACETIC ACTO		IC ACID)2	E THAT 3	9	ETHYL	EXIDE KAL			AZGRETHL		ETHANG:
ALLEC CANADATE CANADATE CANADATE TABLETS BEINGTON CANADATE TABLETS BEINGTON CANADATE TABLETS BEINGTON CANADATE CANADATE TABLETS BEINGTON CANADATE TA	DIMETHTE ETHE		9	CVAMBGE	2 1			0		CJR3 BK		CTCLOPSOPERS
PREFACT 1.PROTRACT CARBON SOUTHER CA. BOLDDING 2-BUTTAGE 1.SOUTHER 1.SOUTHER SOUTHER S	3814044	ALLERI		CINS BA	.				ENE	PAGPILES	it Gribt	I-PROPTL HAS
S-BATTANE 1.5.5-BATTANE THRMS - S-BATTANE TS-BATTANE S-BATTANE S-B	STATISTICS OF THE STATE		¥	I-Pagea	704		SEECHIOL			BUTABLYA	ų	6U14n-1En-31
S-EGIAL MAD REPORT S-EGIAL MAD	CTCLOBUTACIEM		38.	1.3-861	AUIENE	Z-BOIE	ME THEMS	110000		I SOUTH	병.	343174-
CTCLOPENIADIEME CTCLOPENIASE N-TENEDESE N-TE	(ACETIC ACID)		1. 840	4 - E L T T T								****
												Canada Juna

H-MEFTTL RAD	BAPTOL CAE	621	BCC.	#3##		(1)	#2C(1)	PB384(S)
1-HEPTEME	B-MCNTL BAD	BIRENIAL		847662	#3#	(S)	M2P(S)	PB02(S)
185383	150-0CT AME	3£1-A(C)	282#	M2H2	H.S	3ET-A(L)	CU28(1)	PBBCLU
TOLECKE	BCTAME	BIPHEWAL	H3W2	103	1205	BCTAME(L)	C828(5)	PEG(TE)
364436142438	R-BCTTL RAD	C-BIPHENYL BAD	***	m62	H204	TRLUENE(L)	CUUZN2(S)	780(80)
M-HERTL BAD	1-8076#6	GENT TABLE	V C na	40744	#2G3	BENZENE(T)	(S)	PB(1.)
C-CLEWERENE	3447474-8	AZBLEME	1541	**	M20	((0))	CUCGS(S)	PB(S)

HEIE WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF GRIDANT IN TOTAL OXIDANTS

Table C-2

NASA - Lewis CET - 86

Output

Composition H

	•••••	

4 6 6 6	F. 1 5966	***	6. 85.60 6. 86.00 8. 86.00 8. 86.00		-183278.88 5 -149278.68 7 -88688.79 5 -25567.80.5	2222		ţ.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								
				•				
* 24-0 0080000E+EC_	9,			•	•		(ţ -	
•	. 25-0.88886E+88.	16065+60.			. :			
SET							1.	
	, ea.					•		
##C # 5000.085	, 25-0.8080888E+86,	02006 +00.						.!
				۲.	•			1
• •						7.4		
#11 = 26"-1.088006								
1 m				•	٠.	aŭ		
in the state of th								
in the time of time of the time of the time of the time of time of the time of								
2x0Cm = f.				•••				
	1\$3000£-67.		•					
> 4 4 86000000000000000000000000000000000	080888E+96,				,,			
	:				٠.			
INEBUS - d.					· . :			
Slumit e f.				. ,				
1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 1 1 1 1 1								
**************************************	. 00000							
	00000000000000000000000000000000000000							
25.40						,		
MG IMPT: VALUE GIVEN FOR MF. EGNAT, FA. SR	B OF. CONAT	. FA. SB FPCT						
SPECIES BEING CONSIDERED IN THIS SYSTEM	S IN THIS S	VSTEM						
3 M278 E	312/69	כבו	312/68	CC1.2	3 6/78	5013		
112/67 CT	# 5 14 18 14	CACL FORMER ACTO	18/3		512/72	C#2	12/52	HTDBOXINEIMYLEME
	18/8		1 9725	RETARBL	69/9 E	5	312/16	REM BAD
医骨髓 医骨髓 医骨髓 医牙髓 医乳腺	3 9/65		312/65	CB C;	3 6/61	5851.2	3 3/67	£52
BLS 74 CZYCL	3 3/61	ACETVLENE	100	RETENE	308	CZH3 BAD	17 an	METHYL CTAMIDE
	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CHZCHG WAG	1.4/85	ETHTLENE	42 HAN	ACETALDENISE	L 4,35	ACETIC ACID
4 - 1 1 1 1 1 1 1 1 1 1		ETHYL BAD FINANCI	3 3/67	CAC RAD	3 3761	ETANGEEX	3 9/65	Aldre: Mare
	084/41	CAM BAD	40 474	CTCLBPAGFENE	**	3444864	Bu #40	ALLENE
	40 EU	CYCLOPREPARE	L 4/85	PROPYLENE	£ 9/85	PESPYLEME GRIDE	2 9/83	I-PROPYL RAD
17. 多、每次,每一年的四年4月,但是四十四年12月,他们等一届年,我们不在四日日前四	710/85	CTCLOBUTADIENE	1 191	BETAN-15M-3TM	:	1.5-Butables	1777	2-801VRE

	Z-BUTENE TRANS	70 34	STO BERTER		11、12、12、12、12、12、12、12、12、12、12、12、12、1	**	I-BUTENE	51/1	
7 1 1	1-2014		DEN TAXABLE	111/113	E-BRIVE RAD				٠.
14/5	TATOR SAMELING	69/216		718/82	CYCLSPESIABLES:	77777	CVCL3FLWIAME TCAMPSwiame	F12/32	THE FIRM TOTAL
	MERGTOTTHE	(12/84	PRENT NAD	112/84	PRESSY BAR	77/17	BENZENE	112/64	
	CTCLBMEXENE	P15/83	B-BEXT RAB	P18/84	TOLUENE	1 6/87	CRESGI	P12/57	
P14/83	M-MEPTYL BAB	F 4/81	JHVL43H-W	P12/52	1-BCTEKE	P18/83	M-BILTEL BAS	_	_
W 1 7 7 1 1	150-BC14HE	¥14/83	H-HORTL BAD		HAPTHLEME		AIBLEME	111/11	N-DECTE BAS
10/01	C.O. LTRIBELL BAD	1 1/61		777	JE!-#(6)	2//411	£ 1.0	7777	
:12/69	# C#	312/78	HCS 840	7 9/6	1	312/70	200	80 SAB	-
BES 78	E Dave	Bu S 78	****	3 3/79	E C	3 9/78	182	: 3/7:	
59/215	****	3 3/79	#133	1 3/85	2021	29/9 6	•	3 3/66	
3 3766	45,	3 3/43	*	312/67		311/18		312/61	-
94/8	E75787	3 3/44	#1C:2	312/78	K262H2	3 3/17		312/78	
8 C V V V V V V V V V V V V V V V V V V						47/611		462 16	
			701		1170	***		11.00	•
1 S 11	2078	218	2000	4 · Sna		EDS 78	1121	2 2777	
		3 3/11		1979 [3 3/78	(25)	11/11	BENZEME(1)
58/814	TBL4ERE(L)	P18/80	BCTAME(L)	78,36	3ET-4(U)	19/61	#28(S)	3 3/79	MZB(L)
312/61	(5)	312/61	(1)	3 3/66	KCR(S)	3 3/66	ECM(I)	3 3/64	1 10(5)
3 3/86	#CL(L)	212/18	E40(4)	312/78	KBH(B)	311/10	KBH(L)	2 6/11	_
3 3/66	E2C83(5)	3 3/66	#2CB3(5.)	3 6/43	E28(S)	2 9/63	K282(5)	BARTS	HHACL(A)
BAN73	BH45(1 (B)								
_	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.00669605+6	Ų						
		5000		90885					
1 4 882		21 6586		BERRY					
a) d	36+30690880880880888 - 22 -	6-30690280							
	3869.080								
# E									
SENC									
(c)	900000								
,		EFFECTA	EFFECTIVE FUEL	EFFECTIVE BRIDANT	THEOLEG	MESTURE			
ENTABLET		4.2	8-9(2)	(T)ddH	2	20 S/L			
1 104-3X)	34/(# 330);104-31	-0 27004927E+03	927E+83	8 · CODESCORE - 88		-8.27686977E+03	75+93		
					•				
		17.11.21 14.707070	1.2)		365.400	8. \$4.797811F-61	16-61		
1 13		0 36199	G 34199593E-D1	8.888823E+83	186+83	8.34199557E-81	18-3.		
ני		B. 54297	8.54297811£-83	2 - OCESB098E+93	186+88	5.56297811E-03	1E-03		
u		B.18288	8.18285091£-01	4.50868098E+66	38E+86	8.18786091£-91	14-BI		
		8.23621	B. 23621158E-01			# 75671158[-#1	12-19		
			70-1100				•		
MAI INICA	א ני אבר		נפ	HCF	COZ	-82m		212	
*	25 3163 37 -42 372		-28.934	-38.674	-45.366	-34, 315	315	-24.742	
		•	-29.343	-31.449	10.91	-35.258	258	-24.987	
1 -14/34	1 758518 T = Z+5	17.53		:	***	100 50	100		
Y = 14) 14		**		***					
7 7	2925 84 -43 1		-29 54	-31.414	-46.389	-35.257	257	-24.988	
FC-FT= I	-	15.14			- 1	١			
n	4.5			-38.586	-60.136	-40.632	631	-26.868	
n .			-35.024	178. 608	-66.159	169 99-	1691	-76 670	
•	140 751 17 757		11. 11.	144 411	-61.526	-45 579	\$7.0	-26 587	
, .				146 11	-64.643	-47.594	294	-16.835	
*	46- ZZ	'n		-48.954	-6. 654	-47.782	782	-26.636	
	\$ 1745 97 -56 054	•	-33.867	-42.862	-64 . 217	-58.172	171	-17.116	
ij		,	:			430 03-	· ·	*** ***	
,	3 1289 88 -36 959	•	-37.980	£98.24-			•	-77.77-	

THEORETICAL PERFORMANCE ASSUMING COULLIBRIUM COMPOSITION DURING EMPANSION

C C C C C C C C C C		•	GRMELA						AT FEACTION	EMERGY TA: CHD:	STATE	TERF
C	-	۰.	8.4	080	_	2			0.678000	-103430.000		298
Colored Colo	•			000		=	45060		8.546000	-169176.000		298
CHARGE FAMOR FERCEN FREE 100 GAIN CONTRACES EATED 1,3540 Pair 0,000	- 1		~	999					0.355000 0.855000	-25108.000		7.98
CAMERER THREAT DELLA 100.0000 CONTROL 1.5500 PAIR CAMERER THREAT EXTI EXTI EXTI EXTI EXTI EXTI EXTI EXT	-				;				9.017000	0.00		
CHANGES THREAT EXIT EXIT EXIT EXIT EXIT THREAT THRE			2000		CENT FUEL	.= 180.63		IVALENCE NA				
140.00 1 17657 6 15.057 1 12.00 6 1.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CHAK		WEGAT	EXIT	EXI						
C	,	B :		7652	63.857	82.035						
CC		340		7/ 26	5.37EE	4.1474						
Column C				N . CD4 .	1373.0	1567.1	137	1251.4				
T. T. T. T. T. T. T. T.	10/1	53.6			1.1212.74	-1214 4	1 4 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.8386-4 -1385 As				
C	1/5	-761			-1323.74	-1346.10						
### 17.7469	17/60(F)	2.10			7.1675	2.1679						
1,	1.	11			78 787	78. 717						
110 0 4 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0	10.01		-		1 30001	-1.66041		ĩ				
(2) (2) (2) (2) 202 (2) 474 (2) 473 (2) 468 (2) 474 (2) 473	701736		•		2.0115	1.0144		1				
ANCE DATA 111813 1.716 1.2154 1.7123 13 NY SEC 1832 A 1811.2 Z 1822 3.598 ANCE PARAMETERS ANCE PARAMETERS 1.800 8.3000 18.000 15.802 3.598 1.600 8.3000 18.000 15.802 3.598 4978 4978 1.802 1.802 18.000 15.800 25.802 567.56 8.603 1.803	CAL/(S)(K)		_	4769	0.4039	1.4068						
ANCEC 1892 A 1111.2 771.4 774.7 699.9 ANCE PARAMETERS 1.0000 8.3000 18.000 15.802 1.0000 8.3000 18.000 15.800 25.802 51.5000 8.3000 18.000 15.800 25.802 51.5000 13.900 17.800 27.802 52.51.6 1.619 A 2.6 2.1811.8 7.208 A 2.6 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	(5)			1985	1.2160	1.2154	_	_				
AMCE PARAMETERS 1.0000 8.3000 18.000 15.800 27.81 1.0000 8.3000 18.000 15.800 27.81 1.0000 8.3000 18.000 25.800 27.81 1.075	335/W. 131	1097		2.110.	151.4	734.7						
AMCE PARAMETERS 1 0000	#3GMD#		30	1.800	3.165	3.382						
FIFEC 6 4928 4928 4928 4928 4928 4928 4928 55124 1 487			_	6000	8.3000	10.000						
FECT. B 1.677 1.584 1.615 1.677 1.67	. FT/SEE			4978	4328	4978						
-5ECCLB 1999 242.5 264.0 273.1 -5ECCLB 199.1 1899 9 242.5 247.4 256.8 273.1 -5ECCLB 199.1 1899 9 242.5 247.4 256.8 256.8 256.1 20.2 2.7 24.2 25.2 24.2 25.2 24.2 25.2 24.2 25.2 24.2 25.2 24.2 25.2 24.2 25.2 24.2 25.2 25				673	1.544	1.615						
ACTIONS ACTIONS ACTIONS CHAIR STATES 1.4194-6 9.1811-8 7.2084-8 9.3337-8 3.6 ACTIONS CHAIR STATES 1.4394-8 7.2084-8 9.3337-8 3.6 ACTIO 6 2422-9 4.4399-9 1.5394-8 1.2099-9 1.5377-7 5.8 CHAIR STATES 1.4399-9 1.5394-8 5.3160-8 1.5377-7 5.8 CHAIR STATES 1.5394-8 5.3160-8 1.5377-7 5.8 CHAIR STATES 1.5394-8 5.3160-8 1.5377-8 1.8 CHAIR STATES 1.5394-8 1.5394-1 2.8 CHAIR STATES 1.5394-8 1.5394-8 1.6 CHAIR STATES 1.5394-8 1.6 CHAIR STATES 1.5394-8 1.6 CHAIR STATES 1.5394-8 1.6 CHAIR STATES 1.5 CHAIR STATES 1.6 CHAIR	11/235-81			6 487	767.5	266.0						
ACTIONS ACTIONS ACTIONS ACTIONS ACTION 2 (7825-6 1.4385-7 1.2899-7 7.9734-8 2 (2827-9 4.4399-9 1.5784-8 5.5807-8 1.5777-7 2 (957-1 2 9279-1 2.5295-8 1.4387-1 1.2899-7 7.9734-8 2 (351-6 0.742-7 5.282-11 2.4811-1 2.4311-1 2 (351-4 1.2313-4 2.231-4 0.1312-1 2.336-1 2.4311-1 2 (351-4 1.2313-4 2.231-4 0.1312-1 2.336-1 2.4311-1 2 (351-4 1.2313-4 2.231-4 0.1312-1 2.331-1 2.336-1 2.4311-1 2 (351-4 1.2313-4 2.231-4 0.1314-9 0.1311-1 2 (351-5 1.1899-3 2.231-4 0.1314-9 0.1311-1 2 (351-5 1.1899-3 2.231-4 0.1314-9 0.1311-1 2 (351-5 1.1899-3 2.2314-6 2.4816-6 0.1314-9 0.1312-9 4 (351-5 1.1897-3 2.2313-4 0.1314-9 0.1312-9 5 (351-6 0.1313-3 0.1314-6 0.1314-9 0.1312-9 5 (351-6 0.1313-3 0.1314-6 0.1314-1	14-31C/11			1.554	142.3	7.41						
ACTO 2.7435-6 1.6194-6 9.1811-8 7.2084-8 5.3337-8 1.0912-9 5.7875-6 1.6357-7 1.2999-7 7.9736-8 2.22-9 4.2999-9 3.2374-8 5.232-9 4.232-9 4.2329-7 7.9736-8 2.22-9 4.232-9 4.2329-7 7.9736-8 2.232-9 4.2329-7 7.9736-8 2.2310	FRACTIONS											
ACID 100.12-9 5.7875-6 1.63827-1 1.2898-7 7.9736-8 2 9577-1 2 9779-1 2.5394-1 5.5367-8 2 9577-1 2 9779-1 2.5394-1 2.5367-8 2 1600-1 2 1135-1 2.5376-1 2.6622-1 2.5371-1 2 1600-1 2 1135-1 2.5376-1 2.6622-1 2.5376-1 2 2581-4 1.355-4 2.231-8 8.756-9 9.888-10 2 2581-4 1.355-4 2.231-8 8.756-9 9.888-10 2 2581-4 1.355-4 2.231-8 8.756-9 9.888-10 2 2581-4 1.355-5 1.2374-6 2.6629-1 2 2684-6 1.5866-6 9.2577-6 8.556-9 5.6699-1 2 2684-6 1.5866-6 9.2577-6 8.568-8 2 315-7 1.927-9 4.3872-8 1.8872-8 2 315-6 0.357-9 4.3872-8 1.8872-8 2 315-6 0.357-7 2.192-12 5.781-13 5.388-14 2 315-6 0.357-7 2.192-12 5.781-13 5.388-14 2 315-6 0.357-7 2.192-12 6.281-13 5.388-14 4 9034-7 2.192-12 6.281-12 5.381-12 7.882-14 5 7.884-1 2.371-2 8.669-2 9.0007-2 1.0895-11	LDEMYSE	2.7435		3-461	9.1111-8	7.7884-8	3.3337-					
2 2321-6 2.2329-1 2.3350-1 2.3360-1 2.3311-1 2.3511-2 2.3511-2 2.329-1 2.3360-1 2.3311-2 2.35	IC ACID	1 8412		875-6	1.6383-7	I. 2999-7	7.9736-1					
2 5911 - 6 6.77 - 7 5.72 - 1 5.35 - 12 5.35 - 12 5.55 -		6 2423			3.5754-8	5.5167-e	1.5707-					
2.501.0.0.15.2.2.5.1.5.2.5.2.5.1.5.2.5.1.5.2.5.2.		2 457			7.5795-1	2.5560-1	7.4311-					
2.581 - 4 1.725 - 4 2.711 - 8 1.742 - 9 9.888 - 10 5 10 5 1 189 - 10 189 - 10 18		166.3	•		7.242-11	7 4779-1	7 1449-					
7 266 - 7 7 156 - 7 7 1099-2 7 1189-2 1 999-17 5 0033-6 1 5 1899-3 5 2377-6 2 1060-6 6 6999-7 7 5 003-6 1 5 186-6 9 7 2377-8 7 1863-6 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		2.581		7.5		1.734 -9						
1 1979-7 5 2377-6 2 8060-6 6.6799-7 15 15 15 16 16 16 17 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17		7.766	. 7	36 -7	7.093-25	1.189-15	1.949-1					
1.000-0 1.516-6 9.2377-8 7.652-9 5.568-8 1.000 - 5 0.677-6 8.356-9 4.395-9 1.099-9 6.1897-5 3.2013-9 4.3872-4 3.8874-4 1.007-6 2.7911-6 1.207-6 2.637-6 1.597-6 1.395-9 1.0099-9 2.7911-6 1.207-6 2.637-1 1.952-1 1.957-1 1.958-1 1.000-6 2.7911-6 1.207-6 2.637-1 2.72-1 2.72-1 3.398-1 4 1.625-6 3.563-7 2.187-1 2.57-1 3.398-1 4 1.625-6 3.563-7 2.187-1 2.57-1 3.398-1 4 1.627-1 2.57-1 2.57-1 3.398-1 4 1.627-1 2.57-1 3.398-1 3.308-1 3.308-1 3.308-1 4 1.627-1 2.57-1 3.398-1 3.308-1 3.308-1 3.308-1 4 1.627-1 3.398-1 3.308-1 3.308-1 3.308-1 3.308-1 4 1.627-1 3.308		3.6339	-		5.2374-6	7.8860-6	6.6799-					
6.1889-39 1.681-36 6.326-49 6.339-49 1.008-5 6.1897-39 1.2873-39 6.3872-49 1.0082-40		2.504.5	-			7.8615-8	5.5888-1					
5,1213-6, 5,587-6, 1,887-6, 1,887-6, 1,887-6, 1,887-6, 1,999-8, 1,899-8, 1,	222	800 · 7	•			4.395 -9	1.039					
6.759 -7 1.924-12 5.701-13 5.308-14 6.759 -7 1.924-12 5.701-13 5.308-14 1.559 -7 2.182-12 6.203-13 5.308-14 1.599 -6 8.499-14 1.537-14 3.126-16 5.0971-2 8.609-2 9.0037-2 1.0099-1 2.7318-1 2.4008-1 2.4278-1 4.811-7 1.11-17 2.988-13 1.688-1			n			3.4874-4	-ZZQR I					
0.79 - 7 1.752-12 5.001-15 5.598-16 5.5		2.3911	۳.		Z. 6196-E	1.9905-E	-0881-1					
1 339 - 6 8 439-14 1.577-14 3.126-16 9.0971-2 8 5609-2 9.0087-2 1.8095-2 7.318-1 2.410-1 2.4478-1 2.3562-1 6.11 - 7 1 1 15-12 2.447-1 3.4452-1		2 313	•		1.932-12	5.701-15	3.34B-1					
1 111 - 1		1 623	٠,			6. 203-13	3.398-1					
2.1316-1 2.4516-1 2.4516-1 2.5516-1 4.5517-1 4.5111 1.3516-1 2.4516-1 2.55452-1 4.511 1.7 1 116-1 2.4618-1 2.4618-1 4.511 1.7 1 116-1 2.4618-1 2.4618-1 4.511 1.7 1 116-1 2.5418-1 2.4618-1 4.5418-1 5.54		110	٠.			1.777.1	7-87-6					
4. 411 -7 1 115-12 2. 985-13 1. 981-14		7 783	•		7-6004		1.0077					

132	9.2315-3 I.0373-2 I.3356-2 I.2799-2 I.0928-2 7.3913-3
	7.57.77.7 P. 67.47.7 B. 17.67.67.8 P. 67.47.8 P. 67.47.
KGR	统一带者统统"托,有一批批约场"到,有一批托图网"约,每一般制造数"有,则一则取取的"有,约一数数数约"的
KZCLZ	的一句母母,说 "他们是我们的",这一句话看到"对"的一句话的句,以 "是我们的",这一句话的话,是一句子的人,也
*	7.478 -7 1.958 -7 1.958 -7 6.981-14 1.989-14 4.826-16 9.389-18
*	2.305 - 6 7.498 - 7 6.987-12 2.287-12 7.648-13 9.885-15
244	2.306 -6 9 581 -7 4.677-10 2.864-18 4.631-11 7.194-12
Wat 3	3.7831-6 4.2663-6 2.3247-6 2.5729-6 2.7684-6 3.8523-6
9	I.186 -3 4.811 -4 9.623 -9 3.239 -9 2.411-16 1.494-11
m0.7	5,731 -7 1,146 -7 1,291-15 2,819-16 2,917-18 2,993-26
# 2	1.3669-E 1.3368-1 1.3633-1 E.3638-1 1.3653-1 1.3663-1
#2B	5.218 -7 1.574 -7 5.594-13 1.641-13 1.618-14 5.831-14
	2. 364 - 4 2. 27 3 - 5 1. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
*0	F. 4568-7 N. 2004-1 S. 6465-7 N. 2146-1 N. 5217-7 B. 5217-7 B. 9194-1
20	5.191 - 4 1 567 - 4 3.727-11 7.444-12 1.842-13 3.925-19
צנרנון	0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0 1.0000 0
ABBITIONAL	ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE HOLE FRACTIONS WERE LESS THAN 0.50863E-66 FI

s
ĕ
Ξ
2
5
93
ä
ASSIG
3
7
Ħ
5
*
ů
SDEOSE
Š
e. SocoaE-
4
Ĕ
23
ij
w
ũ
ä
=
4
Ξ
HOLE FRACT
2
w
350)
3
1
ED BUT
2
7
SIGERED
Š
ERE CO
8
ž
E
Ü
DUCTS WHICH WERE CONSTI
PRODUCTS
J P
ë
ī
4
200
Ξ
90
4

u	כני	2100	מנו	נפרי	ž	CHCL
CHELS	C#2	CHECKE	CH3	CH3C1	HYDROXYMETHYLERE	METHVLDI1DE
HETHARDL		NCW RAD	CAM BAD	CSCLZ	23	CICLI
C251.	6251.6	C24 RAD	CZMCL	ACETYLEME	KETENE	CZH3 RAD
HEINTL CTAMIDE	CHICO RAD	CHICKO BAD	ETHTLENE	ACE TALDENYDE	ACETIC ACID	FORMIC ACID)2
CINTL RAD	CTAYL GXIDE RAD	ETHANE	AZONETHANE	BINCTHYL ETHER	ETHANGL	E'C BAD
CTANGGEN	CCG #AD	C3	C3M3 RAD	CYCLOPACPENE	PROPYNE	ALLENE
C3#5 BAD	CYCLOPBOPANE	PROPULENE	PROPYLEME BAIDE	1-PEGPTL SAD	H-PROPVL RAD	PROPANE
I-PROPANDL	CARBON SUBBRIDE	ď	BUTADITME	CYCLOBUTABLEME	SETAN-AEX-DIR	1.3-BUTADIENE
Z-BUTTHE	2-SUTENE TRAMS	Z-BUTENE CIS	ISBBTENE	1-BUTENE	(ACETIC ACID)2	T-BUTTL RAD
S-BUTTL BAD	B-BUTYL BAD	H-BUTANE	I Sebutane	CARBON SUBMITAID	C.S	CYCLOPENTADIENE
CYCLOPERTANE	1 - PERTENE	T-PERITL RAD	M-PENSTL HAD	PERTANE	ISOPENTANE	CH3C(EH3)2CH3
NE BAFFIYME	PRENT, RAD	PREMOUT MAD	BENZENE	PRINGL	CTCLONIZENE	M-HEXTL RAD
TOLUEME	CRESSIL	1-HEPTEME	M-MEPTYL AAD	H-NEPTAME	1-CCTENE	M-OCTVL MAD
GCTANE	ISG-BETANE	N-ROBYL RAD	MAPTHLENE	AFBLENE	N-DECYL RAD	S-BIPMENTL RAD
BIPHEMYL	JE1-A(G)	CLCX	CLBZ	213	C128	Kha2
KORY	HZHZ	RCM	K2	KZCZNZ	K252H2	MCO
Kt 2 Gt	MOCL	MBZCL	103	8242	MH2MD2	m2m4
H203	#20#	M285	#2	KSK	63	(191)
BENTERE(L)	TOLUEME(L)	OCTAME(L)	3ET-A(L)	#20(S)	HZG(F)	K(S)
E(F)	KCN(5)	KCH(L)	KCL(S)	KGN(A)	KOH(B)	KOM(L)
«G2(S)	K2CE3(5)	K2583(L)	<28(5)	K282(S)	MNRCL(K)	EMACL(8)

NOTE, HELGHT FRACTION OF FUEL IN TOTAL FUELS AND OF GAIDANT IN TOTAL GAIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUNING FROZEN COMPOSITION DURING EXPANSION

							ALL FEACTION	CACAGA	STATE	F 10 10 10 10 10 10 10 10 10 10 10 10 10	
נתנו א זיטן	:	4.08000	1 1 00000				0.678363	183438.800	v	298.15	
u	•			¥	2.45052		8-546000	-149178.800	W	298.15	
. ن	•			2	£6888		8.355008	-86600 900	v	298.15	
fuer c 17.00	7.68668 M ZG.	20.00000.02	0 1.0¢6¢0		2 · es cob		6.269608 8.612808	-25186.800 8.800	vi	298.15	
	8/5. 6.5500		PERCENT FUEL- 100,0000	100.66		VALENCE BA	ESUIVALENCE RATIO+ 1.3548 PM	PHI= 8.0000			
	CHANGER	TREGAT	EXII	Ex1:	EXIT	EIIT					
PC/P	1.8500	1.7792	46.418	85.697		263.93					
. 17H	340 25	191.23	5.1231	3 9701	2.2966	1.225.1					
, DEG	3163.4	2:61.2	1477.4	1484 5	1267.1	1124.3					
11/1. E	м	2-1612	1.1828-5 9	4795-4	6. 1984-A	3.9111-4					
	126.68	. 11.65	77.00.00	1226-76	-1278.82	-1327.48					
		74 1787		1376.01	-1384	BC (B41-					
S. CAL/(C)(E)		2.1675	2.1679	2.1675	2.1675	2.1675					
	***	*1.	***	**	11	***					
Camps (51)	1100	1 2137	1 1467								
100/W NES	7761	1815	111								
TACK BURNER	0.800	1.050	3.197	3.337	3.643	3.972					
PEBFGRMANCE PARAMETERS	AMETERS										
AE/AT		1.9600	8.3000	18.800	15.800	23.800					
CSTAR, FI/SEC		****	1117	***	****	•					
ני		0.68;	1.582	1.613	1.673	1.727					
INAC, LB-SEC/18		188.9	259.4	262.8	269.5	275.4					
ISP, 13-5EC/18		183.5	7.00.4	245.8	254.1	262.3					
HOLE FRACTIONS											
FORMALDENTOE	0.0000	101	FORMIC ACID	-	8.08801	80	B. 29577	1303		00000	ě
203	8. Z16CB	ี		7.0	0.50026	61.0	5. D3083			0.90303	50
#D#	0.0000	10.	KCC RAD	5	0.000ez	10	61900 1	BACO		0.0000	8
	00000	MCLL			9.0000	#D.2	0.0001			0.04903	9
024	980/2 0	2024	21			w i	8.66882			0.00923	923
		2 3			4.0004	L :	96698	EZELZ	17.	40000	ě
		Ġ				7 2	97071			10200.0	
	0.00024	ä			0.86644	65	8.09052		_		
ADDITIONAL PRODUCTS WATCH WERE CONSIDERED BUT WASSE MOLE FRACTIONS WERE	UCTS WHICH	MERE COMS	SIDERED BU	T WHOSE	HOLE FBAC	TIRMS WERE	LESS THAN	8.50800E-86 FOR ALL ASSIGNED CONDITIONS	ALL ASSE	GNED CONDI	110
	ננר		5000		CCLLS		6014	20	1		į
ביירו כ	74.7		77777			ę	LASCI.	HARDMOAN	MATCHE ATMENIATE CAL		ē
	TOWARD!				200	<u>.</u>	CAN MAD	CDC17		23	
1777 BAN	CZCLA METATI CVANINE		1221 BAN	5	CTH 435		LZMCL Fravione	ACETYLEME	,	KETENE	
CFOSWIF ACTES?			FINAL	FINAL GAINF BAD			A 7 BEST TO SEE	Dimflact Clufe	51470	F1111 1110	3
CMC MAD		,	CUB BAD				CJM3 BAD	CVCLGPRDPERE	PERE	78097	
ALLEKE	CSM5 BAD	o	CTCLGPROPAME	DPAME	PRBPTLEKE	ENE	PROPYLENE BAIDE		RAD	N-PROPTL BAD	ä
PROFABE	I - PROPABL	198	20000	Taranta and							
			CITOMOR MONEY	CARBON SOUDILLOS		1	BUTARIAME	CYCLOBUTADIENE	ADICAE	BUTAN-15N-3YN	1

ISOPENTAME L'UCTEME N-DECTL RAD CL20 CL20 RADON2 MATMO2 RADON2 RADON3 RADON3 RADON3 RADON3 RADON3 RADON3
PENTANE PHESCI. M-MC TAME AZULENE RZENA RZENA RZENA RZN RZN RZN RZN RZN RZN RZN RZN RZN RZN
M-PENTT RAD BENETHE M-MEPTH RAD KAPTHERE CLOZ KZ
T-PENTT RAD PHEROTY BAD 1-MEPTENE ELEM CLEM CCM MPDEL
1-FWTENE PHENT AD CRESGL 150-001AN 151-A(G) NTAN NGCL NTAN NGCL NTAN NGCL NTAN NGCL NTAN NGCN NGCN NGCN NGCN NGCN NGCN NGCN NG
CTCLOPENTANE METATANE BETATANE
CV5LOPENTADIENE CN3S(CN3) CEN3 CN3S(CN3) CEN3 CN3S(CN3) CN3 M-GCTVL RAD M-GCTVL RAD M-GCTV

MOTE, WEIGHT FRACTION OF FUEL : . . . CIAL FUELS AND OF DILDANT IN TOTAL GREDANTS

ECACTABLE		****	ē								:
		9.96.6		7.5500		2.4588		54. 599998		298.150	2 2
3.8080		7.0000	= •	5.6400		3.00	1.0			298.1	2
						£. £36	0.00	1.28880	88.9	0.00	2 2
MAMELISTS SIMPT?											
EASE .		288									
:	24.9.	24-5.0000000E+80	£+86.								
٠	800	\$626.00 0	٦,	. 25*0.008080E+86	BBBE	.88.					
•	,										
٠	٠.										
mega .	Ŀ.										
٠	26-0.	Z4-0. #586668E+56.	£+68.								
	200	743 . 9985	-	25-0. BOCOGBOE+88	3080	.88					
ERATIG	·										
	٠.										
	Ľ,										
	٠.										
•	792	-1.888¢¢	•								
-	٠.										
-											
2.	٠.										
	٠.										
	٠.										
4 · 4S											
	٠.										
SMUCE . !	٠.										
DETH . F											
TRACE .	5.08	9680898	00000	5.000000000000000000000000000000000000							
- 05	E. 68	E. GESSCHERGESCHERGEE+80	00000	108E+80.							
* DS	80.0	G. COBRECORE +DE.	00								
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	١.										
		¢									
•		;									
, ,											
•	٠,			1							
				24.390							
# 5 m C											
ME INPIZ VALUE GIVER FOR GF. CHBAT.	TITE	CIVER F	79 67	. EBBAT.	ĭ	GR FPCT					
SALTINA											
E 21											
	_										
SUBAR . 1		0000000	20000	11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
*		E. Maddagagagagaga	00000		. =	10 000500500500000000000000000000000000	9889				
669	20005	0000		73 085040000000000	0000						
		000000		##* Jesus ###################################							
	•	,									
		-									
SEN3											
	-										
					i				1		
COLUMNIA				EFFECTIVE			EFFECTIVE GXIDAMI	GX10441			
						:			*****	;	
AG-8017195		7		- B. 27833268E+B3	1	2	8 - 80000888E-40		CD+309265BLZ-0-	E+03	

00 00 00 00 00 00 00 00 00 00 00 00 00		-24.747			-24.994		-24.994					166.92-					-27.131	
#5(1) #.5195734E-03 #.361922E-03 #.5195734E-03 #.6248491E-01 #.2554255E-03	**	-34.310	-35.142		-35.249		-35.249		-44.590	-44.60	-45.556	-45.532	-47.641	-47 646	-50.053		*66 · 67 -	-49.963
	C#2	-45.825	-46.359		-46.368		-46.269		198.89-	-68.887	-61.485	-61.45G	-64.556	-64.565	-68.189		-68.034	-63E-19-
B P (I . 1) 0 . 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	יני אני	-58.653	-31,387		-31.392		-31.392		-38.543	-38.557	-39.283	-35.265	-48,896	-40.901	-42.799		-42,786	-42.758
0.07(1.2) 0.3481282E-03 0.3481282E-03 0.57957340E-03 0.27542259E-03 0.27542259E-03 0.44430376E-02			-29.567		-29.571		-29.571								-37.986		-37.961	-37.543
	EC.	-42.330	-43.144	1 - 2911.7	-43.150	T = 2918.6	-43.150	5 = 2918.0	-51.538	-51.554	-52.029	-52.421	-51.448	-54,454	-54.041			-54 126
46-F288, 47,/46	Polmi frm 1	1 20 3166.98	2 6 2911.78	PC/PT= 1.758159	2 3 2918.69	PC/PI= 1.764784	2 2 2918.88	PC/PT= 1 764876	3 7 1580.66	3 3 1579.24	4 5 1589.55	4 3 1511.21	5 6 1376.58	5 3 1376.18	6 1349.79	ADD KELLL)	4 3 1255.40	6 3 1254 79

C C C C C C C C C C	201	CAL FERMU BOCO C	4 0000s					MA PRACTICE	CHEMEN CO.	31436	DEE K
C 1 1 1 1 1 1 1 1 1	201	5030	* 00000								,
C 1, 1000 1 1 1 1 1 1 1 1			•	-	•			A ABSTE	TENTANTAL		
C 1.00020			•			2000		******			
The color The			•		1			******			
C	C 17		2		*			8.000978	-25180.000		291.15
CHANGE 1.000 FTETER FELL 100 1	u	9000						6.011978	D38 '0		0.00
THE CHANGE THOUSE EXT EXIT EXIT EXIT EXIT EXIT EXIT EXIT		•	0000	ERCERT FUEL	- 186.888		TALENCE BATTI				
1,000 1,00	!	CHANGE			EFIT	EXIT	EEST				
15	-/1	1.05			81.952	148.27	246.29				
7.(C					4.1516	2.4255	1.3927				
7.1.(C) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E	1 17 1				1.1161	1376.2	1754.8				
### 17.00 1.00					7.4645-4	7-51/1-4	5.8589-4 .101				
A	CAL/6	-741	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-1329.16	1 346 34	-1391.42	-1411.00				
Record R		-7394.	9-0969- 6:	-4632.74	-4512.60	-4234.67	-4862.95				
### 128.841		2.16			7.1653	2.1653	2.1693				
CALCADA CALC		28.84			28.269	26.299	28.366				
TOTALLY IN THE STATE OF THE STA	(BLV/BLP)T	-1.8633		-1.00083		-1.00133	-1.63173				
TEAL(ICITE)	(BLV/BLT)P	1.87		1.0110		1.0213	1.1921				
TRACTIONS TRACT TRACT	CP. CAL/(S)(E)	E. 527			8. 4066	0.4152	8.6131				
TRACTIC NAST 1 1888 8 734 6 734,9 784,9 784,1 1888 8 1 18	CAMPA (S)	1.174			1.2151	1.2122	1.1773				
GPHANCE PARAMETERS GPHANCE PARAMETERS 1. 1. 8680	58h VEL.N/SEE	1631			134.9	788.3	658.0				
TRACTIONS 1.6800 6.3500 18.806 18.808 18.80	MACH BUNGER	10 ° 8			2.341	3.596	3.953				
	rierdrandi Fa	VAL. 1. 1.									
## FT/SEC #927 #927 #927 #927 #927 #927 #927 #927	AE/AT		1.658	•	10.0se	25.68P	23.880				
18 - SEC/LB	CSTAB. FT/SEC		492		4927	1269	4927				
FBACTIONS			9 !		1.615	1.677	1.732				
** ** ** ** ** ** ** ** ** ** ** ** **	1145 - 18-511/18				7.6.7	1.575	1 67 7				
ALDERTOR 2. 4933-6 1.3921-6 9.8204-8 7.5734-8 5.2885-8 IXC ACID 2. 6364-5 5.7635-6 1.6123-7 1.2951-7 7.9835-8 IX 6364-5 5.7635-6 1.6123-7 1.2951-7 7.9835-8 IX 6364-6 9.041-7 5.585-11 2.1827-11 2.558-12 IX 636-6 9.041-7 5.585-11 2.1827-11 2.558-12 IX 1722-1 2.224-1 2.5874-1 2.6273-1 2.7816-1 IX 631-7 2.204-1 2.5874-1 2.6274-1 2.6274-1 IX 631-7 2.204-1 2.7816-1 2.7816-1 2.6274-1 IX 631-7 2.7816-1 2.7816-1 2.7816-1 2.6274-1 IX 631-6 5.641-7 2.7817-1 2.7817-1 2.7817-1 IX 631-6 5.641-7 2.7817-1 2.7817-1 2.7817-1 IX 631-7 6.5641-7 2.7817-1 2.7817-1 2.7817-1 IX 631-7 6.7817-1 2.7817-1 2.7817-1 2.7817-1 IX 631-7 6.7817-1 2.7817-1 2.7817-1 2.7817-1 IX 631-7 6.7817-1 2.7817-1 2.7817-1 2.7817-1 2.7817-1 IX 631-7 6.7817-1 2.7											
IC ACID 2.6983-6 1.9921-6 9.8208-8 7.9734-8 5.2882-8 12.8212-1 2.9921-7 7.9939-8 12.8212-1 2.9922-1 2.9923-1 2.	PGLE FRACTIONS										
1C ACID 1.0046-5 5 7659-6 1.6125-7 1.2911-7 7-9459-8 2.982-1 2.9072-1 2.5572-1 2.382-1 2.5842-2 2.882-6 9.201-7 5.395-11 2.382-11 2.5842-1 2.882-6 9.201-7 5.395-11 2.382-11 2.382-11 2.5842-1 2.882-6 9.201-7 2.301-6 2.302-6 9 2.382-11 2.5842-1 2.882-9 9.881-7 2.301-6 2.302-6 9 2.382-12 2.382-12 2.892-7 9.881-7 2.301-6 2.302-6 9 2.382-12 2.382-12 2.892-7 9 0.811-7 2.301-6 2.302-6 9 2.302-12 2.892-7 9 0.882-6 9 2.302-6 9 2.302-6 9 2.302-12 2.892-7 9 0.892-9 9 2.302-12 2.892-7 9 0.892-9 9 2.302-12 2.892-8 1.992-9 1.992-9 1.992-9 1.892-9 2.892-8 1.292-8 1.992-9 1.892-9 1.892-9 2.892-8 1.292-8 1.992-9 1.892-9 1.892-9 2.892-9 1.202-12 2.892-9 1.202-12 2.892-9 1.202-12 2.892-9 1.202-12 2.892-9 1.202-12 2.892-9 1.202-12 2.892-12 3.892-12 3.892-13 3.892	FREMALBENTOE	2.6983-		6 7.8204-8		5.2482-8	3.5878-8				
2.9822.1 2.9022.1 2.8526.2 2.856.1 2.856.2 2.866.1 2.9822.1 2.856.2 2.866.1 2.856.2 2.866.1 2.856.2 2.866.2 2.866.2 2.867.1 2.852.1 2.856.2 2.856.2 2.867.2 2.	FRRNIC ACID	1.8366-		4 1.4323-7		7.9439-8	4. 8342-B				
2.1722-1.2.224-1.2.5874-1.2.1821-1.2.254-1.2.2.254-1.2	2	2.9422-		1.5472-1		2.4284-1	1-2862-2				
2.4172.1 2.224.1 2.914.4 2.914	1393	2.418			2.182-11	2.534-12	2.389-13				
2 0.71 -7 2.705 -7 8.755-75 1.305-15 2.789-17 2 0.011 -7 2.705 -7 8.765-75 1.305-15 2.789-17 2 0.011 -7 2.705 -7 8.765-75 1.305-15 2.789-17 2 0.011 -7 2.705 -7 2.705-6 2.7290-6 7.825-75 2 0.011 -7 2.705-75	202	2.1722-			2.6523-1	2.7416-1	Z-9898-Z				
9 021 - 7 2304 - 7 8 2382 - 8 2382 - 8		2.675	1.381	4 2.423 -8		1.890 -9	9.569-11				
2	8 1		2.304	7 8.185-15	1.383-15		2.524-19				
RAD 2 C. 3 1031 -6 8 3022 -9 8 498 -9 1889 -9 278 -9 2 3483 -9 2 1889 -9 2 3483 -9 2 3			٦.	3 5.4497-6	Z. 9293-6		1.0882-7				
6.3231. 2.3288. 3.4.388. 4.5.889. 4.5.899. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.999. 4.5.9			4 1			# C 400 - F	-7838				
2 3665-6 1 2705-6 2 5995-8 1.9956-8 1.8926-8 1 487-6 6 957 7 1427-2 6.2891-13 5.698-4 1 487-6 5.641-7 2 425-12 6.988-13 5.8829-14 6.879-6 1 617-6 9.5661-1 1.754-13 5.8829-14 8.888-2 5 8337-2 8.4659-2 8.9872-2 9.9827-2 2 7100-1 2 7341-2 8.4659-1 2.455-1 2.3559-1 2 6316-1 2 7341-1 2.4759-1 2.455-1 1.757-2 9.8829-1 8.488-2 5 831-4 8.483-2 8.8829-1 1.717-12 3.255-1 1.652-14 8.4806-6 7 831-4 5.483-5 3.8829-5 1.137-2	1	4 4378	• •		3 6007-6	1 6783-4	503E-5				
2.345 -6 6 952 -7 2.145-72 6.288-13 3.698-14 1.647 -6 5.641 -7 2.452-12 6.980-13 3.829-14 6.879 -6 1 677 -6 9.560-12 1.754-24 3.631-16 A 8488-2 5 0347-2 8.4659-7 8.9072-2 7.9029-2 2.7100-1 2.754-1 2.4759-1 2.4559-1 2.4552-13 Z 431 -4 7 555 -7 1.272-12 3.285-13 1.6552-14 8.4006-4 1 4531-4 5.4454-5 3.8829-5 1.7137-5				2.5993-B	1.9756-8	1.6924-8	8-8736-9				
1. 697 - 6 5.681 - 7 2.875-12 6.996-13 5.829-14 6.879 - 6 1.617 - 6 9.5612 - 1.758-12 5.51-12 8.888-2 5.838-2 8.4659-7 8.9072-2 7.9829-2 7.760-1 2.736-1 2.4785-1 2.4553-2 2.3539-1 7.760-1 2.736-1 2.4785-1 2.4553-1 2.4553-1 8.406-4 7.973-4 5.4834-9 3.8829-5 1.1373-1	5		•	2.147-12		3.698-14	1.701-15				
6.879 -6 1 617 -6 9.560-16 1.758-18 5.631-16 8.888-2 5 8381-2 8.6659-2 8.9672-2 7.9828-2 2.7160-1 2.7341-1 2.6483-1 2.6563-1 2.3559-1 2.431 -6 7 655 -7 1.221-12 3.285-13 1.6552-8 8.606-6 7 8531-6 5.6856-5 5.8829-5 1.7137-9	400,	1 697	,	2.475-12		3.629-14	1.558-15				
A 8486-2 5 8387-2 8.4659-2 8.9872-2 7.9829-2 2.7100-1 2.7340-1 2.4782-1 2.4582-1 2.45839-1 2 431 -4 7 555 -7 1.271-12 3.285-13 1.6582-2 8.4866-4 7.4531-4 5.4854-5 3.8829-5 1.7137-5	10.2	6.879	1 617	9.560-14			5.300-18				
2 7360-1 2 7384-1 2 4788-1 2 4585-1 2 15959-1 2 231-4 3 555-7 1 221-12 3 285-13 1 6552-16 8 4006-4 7 6531-4 5 4454-5 5 8829-9 1 7137-5	7.1	- 1111	•	8.4439-Z		3-8286'6	1.1237-1				
2 A31 -6 7 G55 -7 1.221-12 3.289-13 1.652-18 1.6	222	2.7100-	~	2.4783-1		2.3339-1	2.2125-1				
61263713 61678815 614654 6 414664 1 414684 E	202	7 431	•		3.285-13	I.652-14	6. ABE-16				
4 5487		4-9004.8	۰,		5-8288 S		6.4175-6				

*	3.1177-5 1.8984	6-5 8.9166-8 5.336	5,1177-5 1,2984-5 8,9166-8 5,1388-8 1,4816-8 5,1716-9		
#	3.887 -5 E 499 -5	-5 1.734-18 5.286	1.734-18 5.288-11 3.197-12 1.428-13		
0	5,6854-3 4,682	1-3 4.1927-4 5.223	.6854-3 4.6823-3 4.1927-4 3.2113-4 1.6983-4 7.8621-5		
K2CL2	3,9653-5 4,962	3-5 1 8596-3 1. 4B4	1.9653-5 4.9623-5 1 0598-3 1.4848-3 2.4557-3 5.3843-3		
	7.629 -7 2.815	-7 6.612-14 1.451	2.815 -7 6.612-14 1.452-14 4.537-16 1.654-17		
*	2.525 -6 7,687	-7 7.557-13 2.343	1.525 -6 7.687 -7 7.557-12 2.362-12 1.776-13 1.875-14		
2 4 8	2,293 -6 9,577	-7 4.187-18 2.363	9.577 -7 4.187-18 2.363-18 4.177-11 7.474-12		
Met 3	8.6170-6 6 139	2-6 2.4955-6 2.580	.6178-6 6 1392-6 2,8555-6 2,9888-6 2,6865-6 2,9625-6		
9	1.217 -3 4.971	-4 I.B46 -5 3.431	.217 -3 4.971 -4 1.846 -8 3.458 -9 2.665-18 1.658-11		
#6.2	6.884 -7 : 215	-7 1.481-15 2.336	.864 -7 1 215 -7 1.461-15 2,336-16 3,438-18 3,548-28		
2	1.3459-1 1.354	B-1 1.3576-1 1.363	.3459-1 1.3548-1 1.3676-1 1.3631-1 1.3646-1 1.3658-1		
62 m	5.356 -7 1.626	-7 6.877-13 1.791	.356 -7 1.626 -7 6.877-13 1.791-13 1.116-14 5 374-16		
13	2 848 -8 7,592	-5 3.163-11 6.723	848 -8 7,592 -5 3,163-11 6,723-12 1,926-13 2,994-15		
	6 5574-5 3.2830	B-3 6.8521-7 2.442	\$574-5 3.2818-3 6.8221-7 2.4823-3 3.8614-8 3.1817-9		
0.2	5.432 -4 1.654	-4 4 Z46-11 B. 544	.432 -4 1.654 -4 4 246-11 8.544-12 2.151-13 3.985-15		
(1)	0.9800 G G G G G G G G G G G G G G G G G G	0 8 6.6568 0 5.85¢			
ADDITIONAL	PRODUCTS UNION MERE	COMSIDERED BUT WA	ADDITIONAL PRODUCTS WATCH MERE COMSTOLRED BUT WHOSE MALE FRACTIONS MERE	LESS THAN	8.59050E-35 FBR ALL
U	נני	2133	5003	*100	ě
CMET3	C#2	CHZELZ	CH3	CHSCI	HTORBAYNETHY
713	RETHANGL	5	HEN RAD	CHM RAD	20213
212:3	CZCT+	CZCL6	CZM RAD	EZMEL	ACETTLENE

1 -1

U	ככו	בכוג	CCL3	*100	Ď	CMCL
CMELJ	C#2	CHZELZ	CH3	CH3CT	HTDRBXYMETKYLENE	METHVLOXIDE
C**	HE THANGL	5	HEN RAD	CHM BAD	COCLZ	C2
21223	CZCIA	CZCL6	CZN RAB	CZMCL	ACETTLENE	KETENE
CINY RAD	PETHTL CTANIBL	CHICO WAD	CH2CHE RAD	EintlenE	ACETALDENTDE	ACETIC ACID
(FGSMIC ACID)2	ETATE BAS	ETHTL GAIDE RAD	ETHAME	AZSHETMANE	DINETHYL ETHER	ETHANDL
CMC BAG	CVANSSEN	CCB BAD	C	C3M3 RAD	CVCLOPROPERE	PROPURE
#1.6mE	ESHS #AD	CYCLBPRRPAME	PROPYLENE	PROPYLE' : BIIDE	OVE TARRET	B-FEBFYL RAD
PROFABE	I-PREFAUCL	CARGON SUBOLIDE	•	BUTADITHE	CYCLOBUTADIENE	BUTAN-1EN-3TH
1.3-BUTADIENE	2-BUTTRE	2-BUTENE TRAMS	Z-BETENE CIS	I SGBUTENE	1-BUTENE	(ACETIC ACID)2
T-BETTL MAD	S-BUTYL BAD	K-Butve RAS	8-807am	ESCOUTANE	CAPBON SUBMITRID	C.5
CYCLOPERTADIENE	CYCLOPENTAME	1-PENTENE	I-PENTYL BAD	H-PERITE RAD	PENTANE	ISOPENTANE
CH3C(CH3)2CH3	HE HATBITHE	PEENL RAD	PREMOTY RAD	BENZENE	PHENGL	CVCLONEXENE
# SETT BAD	TOLBERE	CEESOL	1-HEPTERE	R-HEPTYL RAD	B-HEPTANE	1-DCTENE
R-DCIYL SAD	BCTANE	ISG-BCIAME	B-BOKTE BAD	MAPTHLEHE	AZULENE	M-DECYL BAD
G-SIPRENTL BAD	BIFNERTL	3E1-A(G)	בוכא	2582	CLZ	C123
MW-0.2	ERG3	2424	#C#	K2	K2C2M2	K202H2
201	MM 2 CM	MOTI	MOZCL	303	82112	EN2HD2
4228	8028	M284	M205	#2	M.5H	03
CtC#1	BENZEMETLS	TOLUERE(L)	CCTAME(L)	JET-A(L)	M28(S)	HZB(T)
E(5)	K(1)	KEM(5)	ECM(L)	ECT (5)	RUN(A)	KG*(B)
#G#(:)	K07(5)	X7003(S)	E2CES(1)	E78(51	K202/51	CALIFORNIA CAL

MACE (8)

CASE MQ. 200	٠.						1	10000		•	
A L M L M							AT FRACTION	ENERGY	STATE		
1.66666	9 091	A. 80000	Ct. 1.89880					-133430.800		29E.15	
10121 9	•	9.90008	K 7.55809		2.49380			-169170.800	s	298.15	
7. BR508	es :	9.0000			2000		E. 354115	200 20988		278.15	
1. 68666	t	9			7.48656		8.811970 8.811970	0.00.0		0.00	
•	8/F= 0 8808		PERCENT FUEL- 160.8450	160.88		EGUIVALENCE BATID» 1.3312		PHI= 0.0060			
		TABBAT	444	1111	FEFF	1113					
	1 207	1 1168	171 79	. 6 63		17 171					
	SAG 23	191 74	\$ 1764	1 4713	7 2428	1 7685					
	3167.0	2864.7	1488.5	1405.2	2265.0	1127.0					
		2 2813-2	1.1134-5 9.6348-4	6348-A	4.1937-4 3.9131-4	3.9131-4					
	-537, 28	-650 23		1226.93	-1278.99	-1327.66					
		-163.25		-1526.85		-1487.53					
í		-6863.34		-8278.43		-3764.84					
CA(/(E)(x)	2.1653	7 1653	Z.1653	2.1653	7.1453	7.1653					
	28.341	22.641	28.841	:8.84	28.841	188.82					
CP. CAL/(G)(K)	8.4086	0.4851	E. 3482	2.3647	8 3569	9.3464					
	1.2697	1.1120	1.2363	2412		1.2553					
SON VEL. N/SEC	1065.8	1314.6	137.3	720.2		647.7					
MACH BERRER	E. 608		1.196	3.336		3.971					
PABA	PERFORMANCE PARAMETERS										
		. 8068	7987		2 S -	23.688					
FT/SEC		4884	*88*	*88*		7886					
!		189.0	1.582	1.613		1.727					
TVAC, LB-SEE/LB		188	259.3	262.7		215.5					
157, 18-560/18		183.5	248.3	245.0		262.3					
MOLE FRACTIBRS											
FORMALDENYDE	0.80000	=	FBRNIC ACID	•	19008.0	ů	B. 29422	1302		0.0000	
	8.21722	ដ			6.86027	2	00000	3		0.00305	
	8 86304	ž	MCG BAS	•	20005.	NC.	8.68632	MMCO		00000	
	8.80808	2	100	•	6.48856	201	10000 · 0			0.04849	
	9 27108	2	1024	•	10905	.				B . 000.0	
	0.0000						G. 66.50	17F.		- BC004	
	***	į		•		:	8 1145				
	B. 80024	2	• _	•	. 88454	70		•			
P B G D C	IETS BRICH	WERE CRA	NETSERED BO	T WASE	MBLE FRAC	ADDITIONAL PRODUCTS WAICH FERE CRASSIDIRED BOT WASSE MBLE FRACTIONS WERE LESS THAN		00E-06 FOR A	17881	8.50000E-06 FOR ALL ASSIGNED CONDITIONS	
	נני		2133		5003		*100	Ē		באבר	
	2+3		CHZCLZ		CHZ		CM3C1	MYDWSXVMETMYLEME	THYLEME	WE THYLOX 3DE	
	JEHNAUGT.	10	2		MCH BAD	a	Can BAD	C0C13		23	
	CZCLA		\$1323		CZH RAD	•	CZMCT	ACETTLENE		KETEME	
	METATL	METATE CTANIDE	CHICO RAD	9		CYI	ETHTLENE	ACETAL DENTOE	TOE	ACETIC RCID	
(FERNIC ACID)2	ETHTL BAD	0.40	ETHTL B	ETHTL BILDE RAD			AZBMETHANE	DIMETHYL ETHER	ETHER	ETHANDL	
	PARODE	*	CCS BAD		ם נ				ENE.	BRAGGE	
	CIMS BAD	0	CYCLEPEDPANE	DPANE		ENE	PREPTIENE GRIDE		9	H-PROPYL BAD	
1		1081	()	CAMBON SQUARES	- CA	71.0	TCARATERE	T-BHTEM:	DIEME	MAN - MIN - MULTING	
7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						,	1588ST ANG	CIALLES CHARLES		Catalla Ations	
1 - BEI 1 1 BEC		7	J) E		7	744.3961	***	241140	ŝ	

150PCMTANE C-CLOMESME 3-00TEM N-06CVL RAD C-CLO C-CLO RADAR	
PENTANE PNESSUL N-KEPTANE AZULENE CL2 KZCZAZ MSN 2N2 N2N2 N2N2 N2N3 N2N2 N2N3 N2N3 N2N3	
######################################	
T-PENTYL BAD PHENTYNERS J-MENTENE E-MENTYL BAD CLE MENTYL BAD CLE MENTYL BAD CLE MENTYL BAD MENTYL M	
1 - PENTERE PRESSOL 150 - GCTAME 150 - GCTAME 151 - A.C.) MINZ MINZ MINZ MINZ MINZ MINZ MINZ MINZ	
######################################	MH4CL(8)
CTC_0PENTADIEKE CNSC(CNS)22645 N-MEKKL BAD N-GCTL BAD N-GCTL BAD N-GCTL BAD N-GC BAD	BRACLEA)

MUNICAL MARKELIA) MARKELIA

Table C-3

NASA - Lewis CET - 86

Output

Composition L

Tue Dec 3 18:16:43 EDT 1991

		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•••••		

		3 9/79 AIEL3 312/67 AIGH 312/75 BAIDH 312/75 BAIDH 312/75 EEL3 312/72 EEL3 312/72 ER 3 5/61 ER 3 5/61 ER 3 8/61 ER 3 8/61 ER 3 8/61 ER 3 8/61 ER 3 8/61 ER 3 8/61 ER 3
10.00 5 259.150 18.00 5 299.150 19.00 8 200 6.00 8 200 6.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3 6/76 AICL2 3 9/79 AICL2 3 9/79 AICL2 3 9/79 BACL2 3 12/72 BACL2 3 6/89 CHZ 5 6/89 CHZ 6 6/89 CHZ
73.976860 -75580.00 14.67630C -75886.80 0.952004 6.00 0.952004 6.00 0.470000 6.00 0.470000 8.00		ALCL ALO ALO BACL CECL CHCL CHCA CO CACL CACLO C
1.8400 6.9593 6.5626 6.7355 8.9630 8.9800 6.6800 8.9800 8.9800 6.8800 8.9800 6.8800	68	19779 ALR 12779 ALR 12779 ALD ALR 12779 ALD ALR 12779 ALR 127
*** *** *** *** *** *** *** *** *** **		112/79 ALM 112/79 ALM 112/79 ALM 112/79 ALM 112/79 ALM 112/70 BA 112/70 BA 112/70 CM 112/47 CM 112/47 CM 112/49 CM 112/49 CM 112/49 CM 112/49 CM
REACTARYS C 2 0000 CL 1.0000 C 2 0000 CL 1.0000 C 1.0000 0 0.0000 AL 1.0000 CO 1.0000 EX 1.0000 CO 1.0000 EX 2 0000 CO 2.0000	######################################	SPECIES BEING CONSIDENTED IN THIS SYSTEM 16.479 AL 16.479 AL 16.481 ALV 112.779

1 4/83	ACETIC ACTO	1 4/85	(FRANTE ACTR)?	78/819	Frav. Ban				
Bur B.	AZONETHANE	Bus 64	DIMETRY, CINER		ETHANGE	1 1/63	Cur esp		
	CCD BAD	312/69	0	19/980	C3H3 RAD	40 Eus	CYCLGPROPENE	Bun B4	PROPTAE
_	ALLENE	Eur B.	C3M5 BAD	41 B1	CYCLOPROPANE	1 4/85	PROPYLENE	1 9/85	PROPELENE BEIDE
	I-PROPUL RAD	1 9/85	M-PROPUL RAD	1 4/85	PROPANE	L 1/84	1-PRCPANDL	3 6/68	CAPBON SUBDITOR
_	•	** #n#	BUTAGIVNE	P10/85	CTCLOBBTADIENE	**	BUTAN-1EK-3YH	**/*	1.3-BUTADIENE
	384179-2	100	2-BUTENE TRAMS	12 and	2-BUTENE CIS	2 Eng	ISBBUTEME	** 478	1-Butene
	(ACETIC ACID)2	1 9/85	1-Butt RAD	1 9/83	S-BUTYL RAD	P10/83	M-BUTTL RAD	1 4/85	M-BUTANE
1 4/85	I SGBUTANE	3 3/61	CARRON SCREETFID	312/69	2	P18/85	CYCLOPENTABIENE	P12/52	CYCLOPENTANE
20/20/		10,000	CAN THE STATE OF T	10/07	M-FERIT BAD	41/07.	FEBTANE	710/15	SOPERIANE
_	LMSL(LMS)ZERS			112/84	PHENT SAD	112/84	PHEMONY RAD	112/114	SENZENE
	1-401		CTCLOMERER		M-MEXTL MAD	18/84	TOTAL	1 6/87	CHESOL
	BCTAME		TSO.DETARE	10/81	M-MCMT BAD	20/27		79/12	A-OCIVI RAB
_	M-DECVL RAD	112/84	O-BIPERT RAD	112/80	BIPKENY.	18/9	JET-ACC.	3 4777	7701111
_	ברכו	3 4/61	כופ	3 3/61	CL02	3 9/65	C12	31/0	£1.20
3 6/73	# D	312/13	CRR	312/73	CRO	312/73	C#02	312/73	2023
3 6/17	20	3 3/66	כחבר	312/11	Cue	3 9/66	Cuz	3 3/66	£13£13
_		3 3/54	HALE	111/69	CC.	312/78	MCG RAD	3 9/64	MCL
_	9044	Bus 78	522	BUS 78	E S C Z	805 78	KERN	3 3/79	NOCT
_	701	3 3/11	22	312/65	H2H2	3 3/79	H28	3/83	M282
_		312/10	MCD	NUS 78	***	84 SR8	KN2	1 6/77	RMS
_	******	FUS 78		RUS 71	#8C.	RUS 78	MD2	8C S 18	MGSCL
	202	3 3/77	#2	RUS 78	M2H2	RUS 71	KKZM02	8 S 18	M2H4
	820	8. SAW	M203	805 TB	M284	Rus 78	M265	NUS 78	#3
	171	3 3/77	•	3 6/37		3 3/17	2.	19/9 [0.3
	AL(S)	3 6/79	41(1)	9/19	ALCL3(\$)	3 9/79	ALCLS(L)	312/19	ALR(5)
	AL283(A)	312/19	AL285(L)	312/70	BACA)	312/70	BA(E)	312/70	84(C)
_	BACLE	312/12	BAC12(A)	312/72	BACL2(B)	312/72	BACL2(:)	3 6/74	BAG(S)
_	BAG(E)	312/15	BAGZHZ(S)	312/75	BAG2M2(L)	3 3/76	£(6#)	P10/80	BENZENE(L)
	Terufue (1)	BE/014	OCTAME(L)	1 8/84	3£T-A(L)	3 6/73	CR(S)	3 6/73	CB(T)
		312/13	CR2H(S)	312/13	CR283(S)	312/73	C#203(T)	2 6/17	Cu(S)
	בהנדו	312/77	(5)	99/9	CUD2M2(S)	312/11	C#26(S)	312/77	Cu20(1)
	NZE(S)	3 3/19	#28{C}	BA273	MM4CL(A)	#AB35	MRACL(B)		
	· ,								
Subar	- 13-9. GOOGGGGGGGGGGGGE+GG.	00000E+00		,					
A TANK		900							
1									
0. + G.0	0.000000								
		EFFECTIVE FUEL		EFFECTIVE OXIDAM	OXIDANT	MIRTBRE	ы		
ENTERL PT		HPP(2)		MPP(1)	~	MSCBO			
(46-MG;)(DEG K)/KG		-0.26506627E+33		C. 9286660E+09		-8.26586627E+83	FE+83		
RG-FORM, WT. /KG	/xG	BOP(I,2)	(2)	BOP(1,1)	•	88(1)			
		0.63GBZBD1E-02		E. 85680800E+00		6.63082801E-02	1E-82		
8		B. 26627772E-81		0.606999965.400		8.26627772E-01	16-01		•
t		G.44108676E-01		6.65900000£+04	05+00	E.44108626E-61	16-61		
ť		0.418G1988E-02		G. COCCCCCCC + SC		8.81801988E-82	16-82		
u		0.10731153E-01		8. 685663866+06		8.18731153E-01	5E-01		
7 :		0.36783710E-03		D. BOGBEGGGE+DO		8.36783710E-63	JE-63		
. .		48-38519881.0		G. SCOOLSCOF. CO.		0.18856738E-BA	# - I'		
3 3		G. 18866				4. 18866758E-84	**************************************		
25		0.63909301E-04	-			0.63707301E-04 0.63909301E-04	1		
;						**************************************	781		

SINGULAR MATRIX, ITERTION I VARIABLE B SINGULAR MATRIX, ITERATION 2 VARIABLE B SINGULAS NATRIE, ITERATION 3 VARIABLE O

SINGULAS MATRIE, ITERATION & VARIABLE IS

WARMING--POINT 1 USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELIMINATED COMPONENT ARE CALCULATED. If Duestionable, beaun with inserted componsed species containing component to

SINGULAR HATRIK, ITERATION 2 VARIABLE 16

SINGULAR HATRIX, ITERATION 3 VARIABLE 14

SINGULAR MATRIX, ITERATION & VARIABLE 10

WARNING--POINT 2 USES A REDUCED SET OF COMPONENTS AND HO SPECIES USING THE ELINIVATED CONTONENT ARE CALCULATED. If Deestionable, rebut with insented condensed species containing compunent to

THE TABLE TO ME TO THE TABLE TO		293	828	T I	8	ALZ83(L)	BACLZ
Z 10 26.97 -22	3.596	-50.300	-36.986	-28.575	-38.986	-105.521	-75.347
PHASE CHANGE, REPLACE	E CR283(L)		(5)	# 11 H			;
THE SELECTION OF THE SE	31.369				***************************************		166.67-

SINGULAR MATRIX, ITERATION I VARIABLE 10

SINGULAR MATRIX, ITCRATION 2 VARIABLE 10

SINGULAR HATRIK, ITERATION 3 VASTABLE 10

SINGULAR MATRIX, ITERATION & TABLABLE 10

WARNING.-POINT 2 USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELINIMATED COMPONENT ARE CALCULATED. If Guestionable, Redum with imserted comdensed species containing component co

EAC12		-75.351		
AL203(1)		-165,519		
8		-38,411		
NCT.		-28.578		
#20		-36.911		
Z 8 3				
#2	במכו	-25.601	-31.358	1 - 2417 0
POINT IVE T M2	C#203(5)	2 9 2437.03	-63.598	PC/P1= 1.788684

SINGULAR HATRIX, ITERATION I VARIABLE 10

VARIABLE 10 SINGULAR MATRIX, TERATION 3 SARIABLE 10 SINGULAR MATRIX, ITERATION 2

SINGULAR MATRIX, TYERATION & VARIABLE 10

-75 355 WARNING--POINT 2 USES A REDUCED SET OF COMPONENTS AND MD SPECIES USING INE ELIMIPATED COMPONENT ARE CALCULATED. If OUESTIONABLE, Require MENTED COMBENSED SPECIES ENTAINING COMPONENT CO. 73 C 92 21 - 105.919 - 105.911 - 105.911

SINGULAR HAIRIK, IIERRILOM 1 VARIABLE 10			
SINGULAR MATRIT, ITERATION 2 VARIABLE 18			
SINGULAR MATRIX, ITERATION 3 VARIABLE 16			
SINGULAR MATRIX, ITCRRITEN A VASIABLE 18			
NAMPINGPOINT 3 USES A REDUCTO SET OF COMPONENTS AND NO SPECIES BSING THE ELEMENATED COMPONENT AND CALCULATED If Ruestionable, beaus with inscript compleses species comparance emphasial co	ELEMEMATED COMPONE	HE ARE CALCULATES	·
3 13 1284.82 -24.929 -67.251 -48.526 -34.631	-37,390	-168.49-	-97,138
P.152.407 P. 21.0010 HITM ALZO3(A) 5. 1286.40 - 26.231 - 67.267 - 48.493 - 34.023 5. 1286.4031.033 - 67.267	-37.378	-171.472	-97.080
ADD BELZEL:) 5 4 1289.47 - 76.939 - 67.139 - 48.456 - 34.818 - 125.429 - 31.805	-37.360	-171.158	-101 842
SINGULAR MATRIK, ETERATION 1 VARIABLE 18			
SINGULAR MATRIE, ITERATION 2 VARIABLE 18			
SINGULAR MATRIX, ITERATION 3 VAPIABLE 10			
SINGULAR MATRIE, ITERATION 4 VARIABLE 10			
WARRINGPOINT 3 USES A REDUCTO SET OF COMPONENTS AND NO SPECIES USING THE ELINIMATED COMPONEN. ARE CALCULATED If QUESTIOMABLE, REGON WITH INSERTED CONDENSED SPECIES CONTAINING COMPONENT OF	ELIMINATED COMPONE CD	R' ARE CALCULATE!	Ġ
-	8	AL285(A)	BACLZ(;)
11 120 21 - 26.933 - 47.371 - 48.653 - 34.880 - 126.835 - 95.118	-31,446	-172.890	-102.283
SINGULAR WATRIT, ITERATION 1 VARIABLE 15			
SINGULAR MATRIX, ITERATION 2 VARIABLE 10			
SINGULAR MATRIX, ITERATION 3 VARIABLE 10			
SINGULAR MATRIX, ITERATION & TARIBBLE 19			
MARNINGPOINT 3 USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELIMINATED COMPONENT ARE CALCULATED	ELIMINATED COMPONE	WF ARE CALCULATE	Ġ
11 01071678811. Study MIN TRUEST D LUBERAND STREET WAS STREET TO STREET	-37,445	-172.005	-102.281
SINGULAR MATRIX, ITERATION I VARIABLE LO			
SIMBULAP WATERY, ITERATION 2 VARIABLE ID			•
SIMCOLER MAIGIE, ITERATION S VARIABLE DO			
SINGULAR MATRIX, ITERATION & WARIABLE IO			
mabeingpgint a usis a meducic set of components and mo species yeing the eliminated component are Calculated If oricitimants beans atta incepto familiases contains component co	ELIMINATED COMPONE	M ARE CALCULATE	·
A 11 1175.50 -17 159 -70,729 -58.091 -35.007	-34.644	-185.610	-103.712
PHASE CRAMES, REPLACE ACLISED WITH MACLICA) 4 2 1173.68 -27.159 -78.72a -50.839 -35.086 -154.819 94.737	-38.582	9-1-5-8	-108.705

-83.598 - 531.358 PC/PTH 2.768749 T # 2457.84

ADD MACL2(A) 4 3 1197.99 -2 -132.684	-27 217 -94.42B	8 1 G . St	-5B.444	-34.959	-58.490	-162.312	-187,189
1173.85	-27.168	-18.719	-58.885	-35.005	-30.681	-185.562	-168.807
AUD EU(5) A 5 1173,89 -2 -134,800	-27.160 -94.802	-18.318	-58.884	-35.664	-38.681	-185,557	-106.805
SINGULAR MATBIX, ITE	STERATION 1	WARIABLE 18					
SIMCULAR MATRIX, ITERATION	RATIGH 2	VANIABLE 10					
SINGULAR NATRIK, ITERATURA	BATIBE 3	VAILABLE 18					
SIMBULAR MATRIX, ITERATION	RATIBE A	WARIABLE 18					
BARNINGPOINT 4 USES A REDUCED SET OF CONPONENTS AND MO SPECIES USING THE ELIF QUESTIONABLE, REBUN WITH INSERTED COMPONENT OF	SES A RED. UR BITH IL	JCED SET OF COMPONANCED ASERTED COMPONENSED	USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING INE ELINIMATED COMPONENT ARE CALCULATED. ERUN WITH INSERTED COMDENSED SPECIES CONTAINING COMPONENT CO	ES USING THE ELL IG COMPONENT CO	MIMATED COAPONEN	I ARE CALCULATED	
μ	211	203		101	8	AL283(A)	BACL2(A)
CRZUS(5) 4 11 1175.36 -2 -134.666	-27.157 -94.778	-76.668	-58.850	-35.849	-38.662	-185.355	-108,704
SINGULAR WATRIK, ITE	ITERATION 1	WARTABLE 10					
SINGULAR MATRIK, ITERATION	RATION 2	VARIABLE 18					
SINGULAR MATRIK, ITERATION	MATION 3	WARTABLE 10					
SINGULAR MATRIK, ITERATION	* ******	VARIABLE 16					
BARNINGPOINT 5 MSES & REDUCED SET OF COMPONENTS AND NO SPECIES USING INE EL	SES PREDA	UCED SET OF COMPSI	WSES & REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELIMINATED COMPONENT ARE CALCULATED.	IES BSING THE ELI	MINATED CONTONEN	IT ARE CALCULATED	
5 11 1059.09 -2 -144.502	-27.419	-75.874	H 50 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-36.371	-48,218	-203.141	-117.586
SIMBULAR MATRIX, ITERATION	BATION I	VARIABLE 10					
SINGULAR MATRIX, ITERATION	PATION 2	WARIABLE 10					
SINGULAR MATRIK, ITERATION	RATION 3	VARIABLE 10					
SINGULAR MATRIL, ITERATION	RATION 4	VARIABLE 10					
HARMINGPOINT 3 USES A BEDUTED SET OF COMPONENTS AND NO SPECIES USING THE E If QUESTIONABLE, REBUM WITH INSERTED COMDEMSED SPECIES CONTAINING COMPONENT CD	ISES A REDI	GCED SET OF COMPONENSED) USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELINIMATED COMPONENT ARE CALCULATED REBUK HITM INSERTED COMPONENT ARE CALCULATED	IES SSING THE ELI IG COMPONENT CD	MINATED COMPONE!	IT APE CALCULATED	
	#2	C8 3	H20	HC.	00	AL283(A)	BAEL 2(A)
CFZ03(5) 5 10 1059.29 -2 -146.286	-27.418 -5.495	-75.844	-53.826	-36.368	-40.284	-203.107	-117.949
SINGULAS WATRIN, ITERATION	I MOTTAN	VARIABLE 10					
SINGULAR RAIRIN, ITERATION	SATION 2	VARIABLE 10					
SINGULAR MATRIX, ITERATION	SHATION 3	WARIABLE 10					
SINGULAR WATRIX, ITERATION		WARIABLE 10					
MARNINGPOINT & USES A REDUCED SET OF COMPENTS AND NO SPECIES USING THE EL	SES A BEDI	UCED SET OF COMPONED MSERTED COMPENSED	6 DSES A REDUCED SET OF COMPONENTS AND NO SPECIES DSING THE ELIMINATED COMPONENT ARE CALCULATED. . REBUN MITH INSERTED COMDENSED SPECIES CONTAINING COMPONENT CO	IES USTNG THE ELI NG COMPONENT CD	HIMATED COMPONE	NT ARE CALCULATED	
4 11 985.87 -2	11 615	-78.405	-54.680	-37.307	-41.521	-216.593	-124.327

						7
				INENT ARE CALCULATED	AL283(A)	-216.477
				LIMIMATED CAMPS	8	-41.518
				CIES USING THE E	1J#	-31,339
				INCHIS AND MB SPE SPECIES CONTAIN	₹ 2	-19.195
VARIABLE 18	VATIABLE 18	VARIABLE 18	VARIABLE 18	UCED SET OF COMPENSE	C02	-78.376
ITERATION 1	ITERATION 2	ITERATION 3	116347184 4	USES A RED Rebus uita i	#2 C#(S)	-27.613
SINGULAR MATRIX,	MGCLAR BATRIE.	SINGULAR MATRIX,	SINGULAR MATRIX,	eastignPoint s If golfstigsamif,	POINT IIM T CRZOS(S)	6 11 986.46 -27,613 -155.861 -5,531
	SINGULAR MATRIX, ITERATION I PARIABLE 18	SINGULAR MATRIX, ITERATION 1 VARIABLE 18 MGLLAR MATRIX, ITERATION 2 VARIABLE 18	SINGULAR MATRIX, ITERATION I VARIABLE ISAGULAR MATRIX, ITERATION 2 VARIABLE IS SINGULAR MATRIX, ITERATION 5 VARIABLE IS	SINGULAR MATRIX, ITERATION 2 VARIABLE 18 SINGULAR MATRIX, ITERATION 2 VARIABLE 18 SINGULAR MATRIX, ITERATION 9 VARIABLE 18	SINGULAR MATRIX, ITERATION I VARIABLE IN SINGULAR MATRIX, ITERATION 2 VARIABLE IS SINGULAR MATRIX, ITERATION 3 VARIABLE IS SINGULAR MATRIX, ITERATION 3 VARIABLE IS WARNINGPOINT 6 USES A DEDUCED SET OF COMPONENTS AND MS SPECIES USING THE ELIMINATED COMPONENT ARE CALCULATED. If QUESTIONABLE, REGUR UTH INSERTED COMPENSED SPECIES CONTAINING COMPONENT CD.	SINGULAR MATRIX, ITERATION 1 VARIABLE 18 SINGULAR MATRIX, ITERATION 2 VARIABLE 18 SINGULAR MATRIX, ITERATION 2 VARIABLE 18 SINGULAR MATRIX, ITERATION 3 VARIABLE

BACL2(A) -124.268

THEBRETTERS PREKET PERFORMANTE ASSUNTING EQUILIBRIUM COMPOSITION BUBING EXPANSION

Fuct m 1.cm							AL PEACHER		STATE	1
					!		(SEE MOTE)	CAL/NOL		DEC #
	.				C1 1.84866		0.741153	-76588 608	vı	298.15
	٠.	2000						8458 . 800		298.15
	•		70000-7- 1	2				- 261808 . 808		298 15
FRE A BREEN								20 A		•
							6.689975			9.00
			\$ 4. SOSE	•			8.889724			8 8
**	8/F= 8.8	8.0005 PER	PERCENT FUEL» 188.6660	.= 118.68		EGBIVALENCE RATIOS 1.4412		PEI= 8.8680		
	CHANGER	148841	EXII	EXIT	FRIT	1111				
4/35	1.6800		15.787	17 A77	-	2.26				
P. AIM	176.11	95 182	1 9494	1 0450		171171				
7. DES A	2694.9		1211.3	1175.4		2 780				
BHG. 6/CC	1.9161-2	-	7.2512-4	5.8439-4	3.2454-4	Z. 3824-4				
*. CAL/G	-526.74	-645.66	-1146.46	-11.84.38	-1232.45	-1763.57				
U. CAL/G	-741.74	-839.85	-1242 41	-1777 74		-1141 97				
C. TAL/G	1-6668	EL . 6619-	- 4865 48	-1847 41	-X646 79	-1441 74				
S. CAL/(G)(E)	2.1798	2.2798	2.2790	2.2798	2.2798	2.2798				
M. MOL WT	14.987	24.939	24.999	25.08E	25. BBB	25.886				
1(475/410)	-I.88126	-1.88652	-1.69847	-1.08619	-1.00032	-1.01036				
(DIA/DII)#	1.8755	1.0111	4108.1	1.8687		2113				
CP. CAL/(S)(E)	0.4717		4653	6 4671		8 4785				
CARRA IS	1 3165			1 22.7						
SOR VEL M/SEC	1849 7			7 7 7	•					
MACH CHARGE										
	! !	}	•							
PERFBRANCE PARANETERS	METERS									
AE/AT		1.0000	7. 2868	10.500	15.600	78 686				
CSIAR FIVSEE		A780	4780	4780						
£.		587	755	1 410	•					
TAR. LB-SEC/LB		787	1 652	25.6		7. 77.				
15P, 18-SEE/18		101.7	231.1	239.2		233.2				
MOLE FRACTIBUS										
	* * * * * * * * * * * * * * * * * * * *	*				;				
A1 F 1 7	•		111111111111111111111111111111111111111		07-000/10 00-000-7 07-000-10 this cold to	7-200				
A: C: 1	1				MI-(7)/7 (4-406)					
						37-887-7				
			CT - 007 . 1	VI-376.	17-608-6 21-229-6 27-007-7					
	18777 B. 677.4									
					ATIONS 0 DISTRICT OF THE PARTY	87-696-7				
			1.1188.			1.1183-7				
FORES: 050000		7 666	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	C7-C47-7 C7-7/4		4.771-17				
201111111111111111111111111111111111111						4-7/68-7				
CHAIL BLID	9-6616		7 6453-1	- 1145-E	7.1456-	7.7356-1				
	B-1020 B		9-9869	I.1657-5	5.8285-3	1.9961-4				
	1 9815-1	9472-1	1-1890 I		1.1945-1	1.6732-1				
כפבו	Z 9- 3VC I	934 -4	\$ 385-18	1.122-18	1, 458-11	3.182-12				
C02	Z-1211 9		1 2988-1			1.5895-1				
ני	1 576 3	7.275 -4	1.617 -7 5.642 -6	3.442 -8	3, 735 -9	7.841-10				
בוט		7 967 -8	\$ 227-16 L	1 321-17	9.932-28 2.551-21	2.551-21				
212	ň	6 BZB -6		1 771-16	771-18 1.982-11 3.876-12	3.876-12				
•1	1 713 -5	Z 662 -6	1 926-15	2 683-17	643-17 0.983-28 1.118-21	1 118-21				

10.2	.153 -6
2	6.183 -5 2.849 -8 3.132 -9
נו	1.5722-5 1.8594-4 3.3887-5
Cascis	2.8719-7 5.1868-4 4.3878-4 2.6622-4 i
	2.614 -7 3.921 -8
**	1.5334-6 7.3671-8 5.2142-8 3.2851-8 2
MCG 840	Z.682 -6 3.741-18 7.929-11 1.813-11 2
ני	2.6672-1 2.0884-1 2.0139-1 2
800	4.7244-7 8.2631-9 4.6738-9 2.2764-9 1
MOCI	9.894 -7 4.315-12 4.324-13 1.845-14
2	1 4829-1 1.8869-1 2.8881-1 2.1515-1 2
20	Z.5953-1 Z.4758-1 Z.3169-1 Z
12	3.189 -7 2.833-11 3,682-11 3,699-13
	1.6321-5 9.6149-6 1.0736-5 1.2947-5
_	1.159-11 7.341-13 1.852-14
~	7.8383-2 7.8375-2 7.8319-2
	1 839 -6 3 426-15 6.984-17 3.735-19
	3.422 -9 3.512-18 1.673-11
~	_
AL203(A)	4.5784-3
AL285(L)	-3 G. Bast & E. BOSS & B. 8500 S
BACL2(A)	1 4.6849-4 4
14612(1)	* 6. 888C E & 6572-4 E. C88C E C. 8683 G C.
C#263(S)	8 8-1113-4 8-1988-4 8-1113-4 B
CA285(L)	
CU(5)	1 4-6104 6 4-6484 6 1 4847-4 6 4016-4 1

1	ALE	ALM		ALB	ALB2	
11.2516	AL 23	A1.787		DACL	****	
כבר	CCFI	5003		5	CHCL	
3H2	CR2CL2	253		PADGRAMETHYLENE	NETHYL SAIDE	
5	MCM BAD	CHR BAD		23	E2512	
ZCL6	C2M BAD	CZMCL		KETEME	CZHS BAD	
CHESCO RAG	CHICHE CAD	ETHTLENE		ACETIC ACID	(FORMIC ACID)2	
ETHTL BEIDE RAD	CINANE	AZGMETMANE	DINETHT ETREM	ETHEMBL	CHC RAB	CVARDEEN
CO PAD	C	CSR3 RAC		PROPYAE	ALLENE	
SHYLBRASTON	PROPYLENE	PREPTIENE BXIDE		M-PHEPTL BAS	PROPANE	
SAPBOR SUBOLISE	3	BUTADITME		BUTAR-1ER-3TH	1.3-BUTADIEME	
-Butent Inams	2-BCTEME CIS	15686TENE		(ACETTE ACID)Z	I-BUIVL RAD	
I-RUTTL BAD	M-ButamE	ISOBUTANE		53	EYCLOFENTABIEKE	
PERTERE	T-PENTAL SAS	M-PENTYL BAD		ISBPENTANE	EM3C(CH3)2CH3	
WEB'L RAG	PHENDIT RAD	BENZENE		CYCLBMEXENE	B-BERTL RAD	
185361	3431424-1	M-HEPTYL RAD		1-SCTENE	R-SCIVL RAD	
SO-BCTANE	N-MONYL SAD	MAPTHLENE		#-BECVL #65	B-BIPHENTL RAD	
ET-A(G)	ברבי	2813		C##	2403	
14.2	8418	941		KCHH (CHH	20z	
202	*	BC 8		182KH	1001	
1225	705	m2m2		8254	HZC	
1234	#202	7		63	1(5)	
1513131	ALCL3(L)	ALM(S)		87(E)	BA (C)	
BACLZ(B)	BAG(5)	BAG(L)		BASZHZ(L)	C(CB)	
(T) 3 H 3 H 7 H 7 H 7 H 7 H 7 H 7 H 7 H 7 H	BCTANE(L)	3£7-A(L)		CB(17)	CHR(S)	
1730	Cv0(5)	Custaz(5)		CHZ&(L)	#2C(5)	

NGTE, VEICHT FRACTIEN OF FEEL IN TOTAL FUELS AND OF BAIDSHIT IN TOTAL CATIGARTS

					ST FRACTION		STATE	TENP
,	ä					CAL/MOL	,	96¢ #
			BEER 1 13		640711	100 00 00 00 00 00 00 00 00 00 00 00 00	n u	748.13
FUEL C 22.81						->8488E. 908	v	298.15
						8.800		80.8
					8.089925	800 T		8.00
		164			B.884712	020 '0		8.60
		16581 . 4 . 15681			0.089724	8 . 069		90.6
	C/F- 8.8880	PERCENT FULL. 188.0888		CBUITALFRCE RATION 1.4412	le 1.4412 PRIm	2000 .		
4/14								
A14	175 11							
T, DEG E	2694.9							
8. 6 /55	1.9161-2							
#, CAL/G	-526.74							
41/6	1 111							
. THE/ [8) (E)	9417 7							
P. MEL WT	24.987							
CP CAL/(C)(E)								
CABRA (C.)								
582 FT 8/587	1881							
MATERIAL STREET								
- 10 m	•							
AE/AY CSIAR, FI/SEC CF IVAC,18-SEC/LB ISP, LB-SEC/LB								
MOLE FRACTIONS								
AICE	1,000,0	ALELZ	9.88384	41543	8.88835	ALBCL	ب.	8000
470+	. 60466	A182**	8.68601	BACLZ	E.ERDAT	-	24	. 30000
FBBMALDENVDE	# 00000	FRBWIC ACID	22220 0	3	8.19815	COLL		G. 00001
C 0 7	1.96773	บ	8.08158	513	0.68060	C 7 7		8.000B2
	E. 68507	2.50	8.0000	CR3Z	8.88983	2		9.66089
בתבי	8.68154	*	8,68157	Ž	8.0520		2	9.60001
MC.L	86161 8	WALG	# # # # # # # # # # # # # # # # # # #	1382	00000	H2		8.13676
#20	E . MO4.	240	W . W . C	<u> </u>	2 1020 2	2		2 data - 0
#2 ALZS3(L)	8.86442	C#283(1.)	6.88677	1	2.08072	6		0.000
ADDITICHAL PRODUCTS WHICH	BUETS WRICH WE	wrof caasiofuto but wuss wall feattions wint LESS Tham 8.58880E-04 FBH All AssiGNED Compilions	MUSE MELE FRACT)	IT JEJA SHBI	ESS THAN 8.5868	10E-06 FBB A	11. 4553	KBIIIGWBS GSWSI
P.	ALE	***	#IF	4	ALB	4182		41.2
AL2516	AL 20	2020	4	-	וונגו 	101		u
ננו	בנריג	CCC3	*133	_				באבר ז
E#2	CH2C13	CH3	CHREL	- 1	BYCHRATE TAYLERS		, DE	***
PETMANGL	ő				בפברז	2		£2£22
£2514					ALLIVERE	RETENE		CZEN BAD
METHYL CYAMICE	E C*3CO \$40				ALC: ALUENTOL	W TILTSW	2	DIST SIMULA
				•	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

	CCS BAD	13		-	A: 1 FW5
C3#5 BAB	CYCLSPRSPARE	PROPULEME		SAN TANKE	PADPART
1-PREPAREL	CATES SUBBILDE	4.7		BUTAN-15R-37R	1 V-Bulantest
3 - B & 1 T M E	2-SULENE TRANS	2-BBTENE CIS		(ACETIC ACEBIZ	T-BUTY: BAG
S-BUITL RAD	E-BUITL RAD	H-BUTANE			CYCLGPFATADIFAF
CTELBPERTANE	1-PERTENE	I-PERITL RAD		I SGPENTABE	CHICKENING
*Exaterve	PHEMT, WAD	PREBERT BAD		CYCLEMENE	R-RENT BAD
TOLOTOF	CAESGL	1-nEPFEME		I-SCIENE	M-BETTL RAD
BETANE	ISG-SCIANE	B-MONTL RAD		M-DECTL MAD	D-BIPBERY: BAD
BIPHENTL	JET-4(C)	CLCH		100	
283	Cu7	CM3CL3	PA10	NED 2	0
ZON	#232	H282		*	
MOCE	102	MBZCL		第三2首位2	H2H4
m28	8263	B284		***	
AL(5)	AL(L)	ALC13(S)		A1203(A)	MACAT
PA(B)	BA(C)	BA(I)		BACLZEL	EAG(S)
BAG(L)	BADIN2 [5]	BA02#2(L)		TOLDERECLD	Briskfill
3E1-A(L)	CE(5)	(1)		CR293(5)	Cursi
(1)	C#0(\$)	CBB2H2(S)		M28(5)	#78(1)
BM4CL(A)	MM4CL(B)				

CALCHIAITANS WERE STOPPED BECAUSE MEXT POINT IS MORE THAN 38 DEG BELON TEMP RANGE OF A CONDENSED SPECIES MÖTE, VEIGHT FRACTIER EF FUEL IN 18181 FUELS AND SF STIBBAT IN 1818L SXIBBANIS

Table C-4
NASA - Lewis CET - 86
Output

Composition Q

Tua Bec 3 18:14:49 207 1991

		3 3/41 FORMALDENTDE 1 5/54 ENA 2 9/45 CO 3UF BA KETEME 1 4/95 ETWIENE 3UF BA ETWIENE
2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		CM2 MEINALBHIDE COM BAD CONZEMD EINEL AND
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		312/72 L 9/ES 3 6/66 3 3/61 BUN BA F10/ES
11. 3 46 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		CONTRACTOR LENE NCM MAD COM CAD CONTRACTOR CAD (FRENIC ACID)2
		312/67 1 9/95 312/70 3 3/67 80% 84 1 4/85
X	if + 600.	STEN C C C C C C C C C C C C C C C C C C C
41 41 41 41 41 41 41 41 41 41 41 41 41 4	### [1515] ### [1515] #### [1515] ##################################	ECTICS DIRGC CONSIDERS IN TAXS STATEM TAXABLE TO THE TAXABLE TO TH
	7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	CING CENSIDERED I
10 10 10 10 10 10 10 10 10 10 10 10 10 1		S DETRO CON S DETRO CON S DETRABOL S DETRABOL S DETRABOL S DETRO CON S D D D D D D D D D D D D D D D D D D D
	N	5PECHES E 7/75 E 4/85 E 9/85 J 9/45 BUR R4

Part Francis		48				3,6			
	15.00	3 9/66	CC# BAD	312/69	[3	084/41	C3+2 4.0	47 430	
3年14日44 48 45B	띹	# # # P	ALLERE	30 BC	C3H5 HAD	Bun 04	CTCLOPROFAME	₹8/0 1	PROPYLENE
L 9/85 PEGPTL	PROPILEME GX13E	1 9/85	1-PREPTE RAD	1 9/85	E-FECFYL MAD	1.4/85	PROPANE	1.84	3 -PROPARGL
3 6/68 CABBON	CABBON SUBBRIDE	312/69	3	** #20	BUTADIVAE	P18/85	CYCLOBUTADIENE	** #n#	BUTAN-1EM-3TM
	1,3-BUTADIENE	Bur Ba	2-BUTTHE	POR IA	2-BETEME TEAMS	76 276	Z-SUTENE CIS	*8 #1 8	ISOBUTENE
	¥.	1 4/85	(ACETIC ACIG)Z	1 9/45	T-BUTTL BAD		S-BUTTL BAD	F10/E3	M-BSITL BAD
	3#1	69/4 1	387139651	19/6	CARROR SUBBITERS		: :	F10/85	CYCLOPENIADIENE
PICASA TANGCATANA	CTCLEPERTANE	75/114	I-PERTER:		T-FERTYL BAD		M-PENTYL BAD	710/85	PLATANE
		787	ERSE(LA3)4183				THE REAL PROPERTY.	******	Den Argenta
		1777	1 . 10 0 4 5 6 5	10/010	LILLUMEAERE		M-MENTERS	**/***	
	11 840	6/82	GCIANE	*/45	152-0CTAME	P. 18.	M-ROWY, BAD	But 24	BAPTR1585
		P18/83	R-DECTL BAD	1.12/84	B-BIPNEMTL RAD	112/84	BIPHENTL	18/97	3C1-A(G)
		111/6	MCM	312/70	MCB BAD	312/16	BHCB	4 US 78	Dem
		Bus 78	MW63	9/38	#8 2	3 3/77	*1	312/65	12 to 2 to 2
		1 3/85	ZOZH	3 3/77		3:2/16			X
MER W/ ACT		11/11				100		#US 73	102
		200			7474	1 2 2 2	77872	40 Sug	
		3 1/73		16/77		4/17			ì
		312/72		1 9763	P#2	3 6/70		19/9	
		312/65	1802	BAR 73	BICS	BAR 73	61 (1)	3 3/38	(10)
	E(1)	P10/80	TRLUEME(L)	P18/80	SCTANE (L)	78/8 7	3ET-A(L)	18/81	#26(S)
		3 3/62	PB(S)	2 3/62	(3)84	112/11	PBC(BD)	312/71	PBD(vx)
		312/71	PEG2(S)	312/71	(5)40504	3 6/19	Z#(V)	3 6/79	re(B)
		1 6/61	ZBW(S)	3 6/61	ZRM(L)	312/65	ZNC1(A)	312/45	7807(8)
JIZ/AS ZWUZ(L)	•								
	* 11*** 666266666666	04300000							
	2 15000000000000000000000000000000000000	9000	3 130000000000000000	. 000					
000000	. 0000	3.0000		6.250388	6.2503668668600				
3000	GOSCOE+OU.								
	* 27°0 880858688883C803E+3C	GECOUSE+S	ė.						
	3005.000								
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
	_	I DE LETTAL FUEL		EFFECTIVE SKIDANT	EXIDANT	FETATE			
EBIDALPY		#PP(2)		**************************************		0#15E			
(KG-MOL)(DEG K)/KG	746	-0.67743	.6774:0225+02	0.80039088E+00		-8.677470ZZE+0Z	2E+02		
			į						
3 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		7771108	807 (1 t) 1 4 4 8 7 7 4 4 f - 6 1			88(1) 8 14487744F-87	46-07		
			286077155-01	8 B5050565E+00	001-300	8.Z86G7715E-01	\$E-01		
*		E.29159593E-01	593E-31	\$.000000088E+00	68E+03	8.29159593E-01	3E-01		
			#40E-01	0.600666866	005+60	G. 21203588E-01	8E-01		
4			9687C128E-D4	0.0000000E+00	80E+80	9.958781286-84	#E-D4		
		0 90847	42785648E-D4 9084783E-D6			0.4270C445E-04 8 98R477#7F-94	3E-04		
	;			,	;	,			
	3		178	7	i	70.7	•		=
1 25 2920 1	18 -30 116		-36.143	-18.137	-25.033	-55.053		-18.915	-23,540
ADD IRG2(B)									
1 5 2955,30	10 - 3E.104		-36 083	-18.180	-25.076	-62-741		-19.844	-23.667
ADC ZBC2(L)	-38 105		140.46-	-18.174	-25.069	-62.801		-19.626	-23.649
180 4082 Showse									
1 2 2951.31	11 -30 105		- 36.890 -	-16.175	-25.871	-62.791		-19,829	-23.653

	-23.090	-23.104		16	23.101	-23.101	-28.339	-28.349	-19.740	-19.154	-18.147	-18.153	-17.532	-17.531	-16.624	-16.629	ā	-16,640
t	-18.457	-18. a73	٠	t	-18.468	-18.468	-15.823	-15.040	-14.885	-14.614	-13.783	-13.788	-13.209	-13.208	-12.362	-12.367	ť	-12.377
2802(1.)	-66.390	-66.70A		IROZ(B)	-66.738	-46.738	-84.178	-84.867	-98.737	-90.653	-97.236	-97.203	-100.876	-168.880	-186.224	-106.229	ZB02(A)	-104.166
H2	-25.271	-25.276		H.2	-25.277	-15.217	-25.867	-25.860	-26.842	-26.848	-26.204	-26.203	-26.291	-26.291	-26.416	-26.416	K2	-26.415
~	-18.367	-16.372		#2	-18.374	-18.374	-18.908	-18.964	-19.856	-19.854	-19.187	-19.186	-19.236	-19.256	-19.552	A) -19.355	н2	-19.352
#79	-37.224	NITH 2102(8) -37.216 -1		M 2.0	-37.223	-37.226	-41.961	-41.932	-43.699	-45.677	-45.418	-45.481	-46.365	-46.366	-47.764	BITH IEG2(A) -47.760	#Z0	-47.743
5	-30.797	JO. 795	T = 2668,59	8	-30.681	T = 2666.37 -30.801	T = 2666.35 -33 464	-33.446	-34, 399	-34.387	-35,387	-35.362	-35.818	-35.811	-36.544	LACE 2802(8) -56.542	93	-34.533
POINT ITM I	4 2664.85 -	PHASE EMANGE, MEPLACE ZROZ(L) Z Z Z448.58 -30.795	PC/PT+ 1.781186 T	POINT LIE T	3 7666.57 -	PC/FTm 1.789255 T Z Z Z666.35 -	PC:/FIx 1,789311 T	- 1897.79 -	5 1713.91 -	3 1714.08 -	\$ 1567,74	3. 1568.45 -	- 28.96.1 6	3 1496, 74 -	5 1484.85 -	PHASE CMANGE, REPLACE 2802(\$) 7 Z 1404.39 -56,542	-	3 1405.41 -
P01#1	~	PHASE 7	PC/PT.	POINT	2	PC/PT=	PC/P14 3	n	•	•	•	•	•	•	^	PHASE	POINT ITM	•

IMEGRETICAL GOURET PERFORMANCE ASSURING CONILIGRIUM COMPOSITION DURING EXPANSION

TEMP	298 15	298.15	296.15	298.15	298.15	298.15	298.15	299-15	29B. 15	298.15	298.15	298.15 298.15																																					
STATE	v		· W	۱A	v	v	Ŋ	v	v	s	v	v v																																					
		000	200	000	001	000	99	000	000	6	008	88																																					
EMERGY CAY / MR	-85100.800	-93070.000	17730.800	-282900,000	-23550.800	-7460.800	-15450.800	-655130	-16020B.BOD	-48500.800	•		PNI- 0.6058																																				
WT FRACTION	6.113400	0.113600	0.440590	8.046380	0.01410.0	6.007560	8.8840BC	0.083400	8.843488	0.0100.0	0.815080	0.004000	.6786 PH																																				
18	;												KTIU- 1.	ì	EXI.		1485 4	4-6257-4	-607.74	-924.24	-4228.26	2.4338	***	714.67 1 Manual 1-	TODE T	0 4118	1.2520	781.2	3.838		6 7500	5166	1.527	263.0	Z4Z. 0		7 1790-4	2474	5 S616-R	6.4719-7	1.7685-1	1750-1	3159-6	1.5243-7	2.8333-9	1020	1		1
													CODIVALENCE RATION 1	į			1 9491			-893.92			***			0.4114	1.2524	6.988	2.839		5 6000	SIGG	1.483	258.1	235.1		7 1776-4					1.1679-1	4 1057-6	3.1667-7					
	00000	3.68688	0.6588		. 15641		2 · 88898		5. BBC88		17.86050				11 100	7887 8	1568	6.8615-4	-740.24	-87g.25	-4557.52	2.4338	***	-1.88601	1.8601	8.4116	1.2522	625.3	2.728		A. 25GO		1.448	254.2	4.622		7 1736-4			7 7171-2	2.6011-1								
					 ~				=		E 17.		PERCENT FUEL= 150.8869		17 450		1714 0			121.43	-4855.46		** ***			0.4131	1.2512	6.298	2.474		3.1350	2700	1.373	246.1	117.7		. 11776-4												
	. 85850	. 80000	6.00000	16.86650	00000		8888	00000	00000		16.60600	N 15.88883	UEL= 1	:						-	37 -41	38 2					_																	•					
		-		7				-	15.0		16.	15.6		i	18 575		1697	1.4736-3	-663.48	760.	-5222.37	2.4338	11 677	-1.00864	1.0858	6.4167	1.2488	9.986	7.7		2.25	į vi		235	207.8		1178-6	7 038P-7	7 3114-7		3.0317-1	9.1166-7	# E475-5	9879-7	1. 2684-7	1446-7			
	*	×	ŧ	×	I		ľ		z		=	*	ERCE					=	·	-	5	_					_	_	_								•	٠,							-	-	_	1	١
	00000	. 66060	. 00000						. 00000	1.00000	12.80000	18.06000					7444	6.1562-3	-270.51	-491.	-6759.96	2.4338	** **	-1.00091	1.3296	8 4634	1.2275	1846. 4	1.002		1.0000	2100	0.5	297.	108.7		2.1631		1 40177-4	7 370A-E	-		1-11-1	3.7915-6	9-0996 7	4778-7			
MULA	•					~		-	~		17	1	0.8008			; =				:	3	38	:			2	9	h	9										4	-	1	٠.	, =				•		
Ę	1										_				1 0000	100	2951.3	9.9299-3	-134.63	-388.20	-7317.61	2.4338	**	-1.06287	1.0422	0.9836	1.2156	1117 7	9.800	TERS							1441.		7.5759-6	7273	2199	7.8786-2	1.1641.4	6.5825-6	1.2894-5	A-064A			
CHENICAL		. 00000	. 80000		8000	80040		9999	. 50600	. 60000	. 60000	. E0086	#/£	•				•	1	1	١			7		_				PARAME		L		=	=	Š	•			~	'n		•	•	-	-	•		
Ü H		•	•	2	~	•	7	•	2	-	n.	. .						j,	Ų	ور	ن	x) (9),		1	4.	7(6)	ŝ	#/SE		AMEE !		. FT/SEC		1-SEC/1	1-SEC/1	FRACTIONS		FMTDF	0110										
	fuer	FUEL	Futt	בונו ביינו	ייי	TRE	1101	FUEL	ruEı	FUEŁ	FUEL	הנו			2/34	A 4	7. O.C. R	BKO, G'CE	H. CAL/G	U. CALJG	G. CAL/C	S. CAL/(G)(K)	100	. 5	(DIT/DIT)	CP. CAL/(G)(F	CAMMA (S)	335/H. 134 HDS	MACH MURBE	PERFORMANCE PARAMETERS	AE/AT		ii.	IVAC. LE	ISP, LB-SEC/LB	MOLE FR		FORMALDENTOF	FRANC ACID	***	00	202		Z. U. Z.	HCG BAD	6000	2	-	

	DEED COMDITIONS WETMANDL ACTITE ACTITE ETMANDL ETMANDL ETMANDL N-FROFTL RAD MUTAN-EEN-YNN (ACTITE ACTO)2 CS MUTAN-EEN-YNN CYCLONEXEME L-DCTENE MAZDL
	E-06 FOR ALL ASSIGNMENT -06 FOR ALL ASSIGNMENT -07 FOR ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
1,6775-1 1,5775-15 6,037-15 6,037-15 7,1017-6 7,1017-6 7,1017-6 7,1017-6 7,1017-1 7,	HESS THAN G.50000 HYDRANE CER RADMETNAME CERS ALOMETNAME CERS ALOMETNAME TOWN THE MAD MITTARE MITTARE MAD THE MAD MITTARE MAD THE MAD MITTARE
1.7900-1 1.7446-1 1. 1.180-11 3.472-12 6. 1.180-11 3.472-12 6. 1.180-11 3.472-12 1. 1.180-11 3.472-12 1. 1.180-12 1.481-12 1. 1.180-12 1.180-12 1.	LE FRACTIONS WERE CN3 CN2
7 1628-1 7 0974-1 1 9404-1 1.8475-1 1.7908-1 1.7444-1 1.4775-15 5 827 - 8 24.6 1 8 1874-1 1 584-12 8 .458-14 1.4577-15 5 827 - 6 2.84 - 1 1.841-1 1 584-12 8 .458-14 1.4577-15 2 795 - 6 9.584-1 1 .486-8 5.495-8 1.489-13 3.47-12 6.835-12 1 0340-5 1.3396-3 1 2997-6 6.8313-6 6.8214-6 6.827-6 7.8107-6 1 0340-5 1.3996-3 1 2997-6 8.8513-6 6.827-6 6.827-6 7.8107-6 2 5.527-1 2 5.641-1 2 5.554-1 2 5.557	C
2.852 - 6 2.84	S. WHICH WERE CONS: CM
M M M M M M M M M M M M M M M M M M M	APDITIONAL PROCUCT C C CAS RAD (198NIC ACID)2 CEC RAD ALLENC 1.3-BOTALINE CASCICERSTREE CASCICERSTRE

NOTE, WELCHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL BREBANTS

THEORETICIL ROCKET PERFORMANCE ASSUNING FRUZEN COMPOSITION BESIMG EXPANSION

OPTHE	AL LEME	CSM5 RAD	CYCLEPERPAGE	F. C. F.	***************************************
				TOTTO TEST DESCRI	Dea Tacher-
A			CAXBON SUBBILDE	BETABLYME	CVCISSWIANTENE
JAM-ZER-SVA	I.S-Butablene	Z-ButymE	2-Bulfaf :RAMS		
THE PLEASE OF THE PARTY OF THE				TORRET	1-201EBE
71011	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DVE TAIRS-C	E-BETTL BID	I SOBETANE	CAPBOR SEBRITATO
	CYCLOFENTABIENE	こってしのりをねずみ出を	1-PEGTENE	COR STREET	WE WIT LOSE
OPENTANE	CH3C(CH3)2CH3	SETATET VOE	PRODUCT BAD	 	
TL BHEXENC	M-MF KVI RAD	THE REAL PROPERTY.		111111	TORTEL
			1967	M-MEPTYL BAD	#-#[PTAME
0.12 5	H-BCTVL BAD	ECTARE	I SO-BUTANE	MAPTHLEME	AZULFAS
DECT. PAS	S-EIFRENTL BAD	BIPHERTL	3ET-A(G)	-	
.m.2	H2G2	608	1100		701
71167	-			COM.	E2#2
	****	0.74	MZB3	M205	*3
		284	47	780	BI(S)
(T)	C(SF)	SENTENE (T)	TSCHEME(L)	751-8(c)	700
(1)0	98(5)	Pater	PBD(#2)		16101
(304(5)	78661		**************************************		(5)708.
	1		7117	(T)W22	2402(A)

MOTE, WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF GRIDANT IN TOTAL SAIDANTS

DISTRIBUTION LIST	No of Copies
Commander U.S. Army Environmental Hygiene Agency ATTN: HSHB-MO-A Aberdeen Proving Ground, MD 21010	1
Commander U.S. Army Environmental Hygiene Agency ATTN; Library Aberdeen Proving Ground, MD 21010	1
Commander U.S. Army Missile Command ATTN; Propulsion Directorate, RDEC/Mr. L. B. Thorn Redstone Arsenal, AL 35898	1
Commander U.S. Army Medical Research and Development Command ATTN: SGRD-PLC Fort Detrick Frederick, MD 21702-5012	1
Commander U.S. Army Medical Research and Development Command ATTN: SGRD-RMI-S Fort Detrick Frederick, MD 21702-5012	1
Defense Technical Information Center ATTN: DTIC-FDAC Cameron Station Alexandria, VA 22304-6145	2
Commander U.S. Army Biomedical Research and Development Laboratory ATTN: SGRD-UBZ-RA (Ms. Karen Fritz) Fort Detrick Frederick, MD 21702-5010	2
Commander U.S. Army Biomedical Research and Development Laboratory ATTN: SGRD-UBG-O (MAJ Young) Fort Detrick Frederick, MD 21701-5010	26

DISTRIBUTION LIST (Cont'd)	No of Copies
Central Research Library Bldg. 4500-N, MS-6286 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6286	1
Document Reference Section Bldg, 9711-1 Oak Ridge National Laboratory P. O. Box 2009 Oak Ridge, TN 37831	1
Laboratory Records Bldg. 4500-N, MS-6285 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6285	1
ORNL Patent Office Bldg. 4500-N, MS-6258 Oak Ridge National Laboratory P. O. Box 62 Oak Ridge, TN 37831	1
T. M. Gayle Bldg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120	1
M. R. Guerin Bldg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120	10
R. A. Jenkins Bldg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120	10

DISTRIBUTION LIST (Cont'd)	No of Copies
C. Y. Ma Bidg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120	1
R. L. Moody Bechtel National Corp. 151 Lafayette Drive Oak Ridge, TN 37830	1
C. W. Nestor Bidg. 9104-2, MS-8058 Martin Marietta Energy Systems P.O. Box 2009 Oak Ridge, TN 37831-8058	2
Mr. J. A. Reafsnyder Energy Research and Development U.S. Department of Energy Oak Ridge Operations P. O. Box 2008 Oak Ridge, TN 37831-6269	1
C. V. Thompson Bldg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120	1
B. A. Tomkins Didg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120	1
Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831	10